Exopolysaccharides from Lactic Acid Bacteria: A Review on Functions, Biosynthesis and Applications in Food Industry

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i2.414-423.5213

Keywords:

exopolysaccharide, biosynthesis, function, microbial genetics, food industry

Abstract

Lactic acid bacteria are the substantial source for producing polysaccharides used in technological applications as thickeners and viscosifiers in the food industry. A broad variety of lactic acid bacteria species secrete structurally diverse exopolysaccharides that contribute to their surface attachment, protection against abiotic or biotic stress factors and nutrient uptake. The exopolysaccharides are produced naturally during fermentation process by living lactic acid bacteria cells and accepted as postbiotic for these metabolites having various physiological health-promoting effects. Exopolysaccharide producer lactic acid bacteria encode a great number of enzymes and regulatory proteins involved exopolysaccharide biosynthesis process. This process is a complex and occurs through presence of multiple genes. However, it is crucial the understanding of structure, composition, function, chemical, and physical properties of exopolysaccharides which vary from one type of bacteria to another via chemical analysis methods. In this review, the use of lactic acid bacteria exopolysaccharides, their structures, genetic modules and biosynthesis, and the use of exopolysaccharides derived from lactic acid bacteria in the food industry are described, discussed and focused on recent developments.

References

Abd El Ghany K, Hamouda R, Abd Elhafez E, Mahrous H, Salem-Bekhit M, Hamza HAA. 2015. Potential role of Lactobacillus acidophilus LA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnology and Biotechnological Equipment, 29(5): 977–983. doi: 10.1080/13102818.2015.1050455

Adebayo-Tayo B, Ishola R, Oyewunmi T. 2018. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnology Reports, 19, e00271. doi:10.1016/j.btre.2018.e00271

Adesulu-Dahunsi AT, Sanni AI, Jeyaram K. 2018. Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT, 87: 432-442. doi: 10.1016/j.lwt.2017.09.013.

Ale EC, Bourin MJB, Peralta GH, Burns PG, Ávila OB, Contini L, Reinheimer J, Binetti, AG. 2019. Functional properties of exopolysaccharide (EPS) extract from Lactobacillus fermentum Lf2 and its impact when combined with Bifidobacterium animalis INL1 in yoghurt. International Dairy Journal, 96: 114-125.doi: 10.1016/j.idairyj. 2019.04.014

Ates O. 2015. Systems biology of microbial exopolysaccharides production. Frontiers in bioengineering and biotechnology, 3, 200.doi:10.3389/fbioe.2015.00200

Bachtarzi N, Kharroub K, Ruas-Madiedo P. 2019. Exopolysaccharide-producing lactic acid bacteria isolated from traditional Algerian dairy products and their application for skim-milk fermentations. LWT, 107: 117–124. doi: 10.1016/j.lwt.2019.03.005

Bancalari E, Alinovi M, Bottari B, Caligiani A, Mucchetti G, Gatti M. 2020. Ability of a wild Weissella strain to modify viscosity of fermented milk. Frontiers in Microbiology, 10, 3086. doi: 10.3389/fmicb.2019.03086

Becker A. 2015. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Frontiers in Microbiology, 6, 687. doi: 10.3389/fmicb.2015.00687

Besrour-Aouam N, Fhoula I, Hernández-Alcántara AM, Mohedano ML, Najjari A, Prieto A, Ruas-Madiedo P, López P, Ouzari, HI. 2021. The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohydrate Polymers, 253. doi: 10.1016/j.carbpol.2020.117254

Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, Van Calsteren MR, Millette M, Savard R, Lamontagne L. 2010. Intermediate Chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. Journal of Applied Microbiology, 108(2): 666–675. doi: 10.1111/j.1365-2672.2009.04450.x

Boddapati S, Rai R, Gummadi SN. 2020. Structural analysis and antioxidative properties of mutan (water-insoluble glucan) and carboxymethyl mutan from Streptococcus mutans. Process Biochemistry, 97: 130–139. doi: 10.1016/j.procbio.2020.07.006

Botelho PS, Maciel MIS, Bueno LA, Marques M. de FF, Marques DN, Silva STM. 2014. Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydrate Polymers, 107: 1–6. doi: 10.1016/j.carbpol.2014.02.036

Chen XY, Levy C, Gänzle MG. 2016. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application. International Journal of Food Microbiology, 239: 95–102. doi: 10.1016/j.ijfoodmicro.2016.06.010

Ciszek-Lenda M, Nowak B, Srottek M, Walczewska M, Gorska-Fraczek S, Gamian A, Marcinkiewicz J. 2013. Further studies on immunomodulatory effects of exopolysaccharide isolated from Lactobacillus rhamnosus KL37C. Central - European Journal of Immunology, 38(3): 289–298. doi: 10.5114/ceji.2013.37743

Ciszek-Lenda M, Nowak B, Śróttek M, Gamian A, Marcinkiewicz J. 2011. Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37. Effects on the production of inflammatory mediators by mouse macrophages. International Journal of Experimental. Pathology, 92(6): 382–391. doi: 10.1111/j.1365-2613.2011.00788.x

Cuevas-González PF, Liceaga AM, Aguilar-Toalá JE. 2020. Postbiotics and paraprobiotics: From concepts to applications. Food Research International, 109502. doi: 10.1016/j.foodres.2020.109502

Dabour N, LaPointe G. 2005. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Applied and Environmental Microbiology, 71(11): 7414-7425. doi:10.1128/AEM.71.11.7414–7425.2005

Deepak V, Ramachandran S, Balahmar RM, Pandian SRK, Sivasubramaniam SD, Nellaiah H, Sundar K. 2016. In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines. In Vitro Cellular and Developmental Biology - Animal, 52(2): 163-173. doi: 10.1007/s11626-015-9970-3

Deo D, Davray D, Kulkarni R. 2019. A diverse repertoire of exopolysaccharide biosynthesis gene clusters in Lactobacillus revealed by comparative analysis in 106 sequenced genomes. Microorganisms, 7(10): 444, doi: 10.3390/microorganisms7100444

Dilna SV, Surya H, Aswath, RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM. 2015. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Science Technology, 64(2): 1179–1186.doi: 10.1016/j.lwt.2015.07.040

Dimopoulou M, Vuillemin M, Campbell-Sills H, Lucas PM, Ballestra P, Miot-Sertier C, Favier M, Coulon J, Moine V, Doco T, Roques M, Williams P, Petrel M, Gontier E, Moulis C, Remaud-Simeon M, Dols-Lafargue M. 2014. Exopolysaccharide (EPS) synthesis by Oenococcus oeni: From genes to phenotypes. PLoS ONE, 9(6). doi: 10.1371/journal.pone.0098898

Dimopoulou M, Raffenne J, Claisse O, Miot-Sertier C, Iturmendi N, Moine V, Coulon J, Dols-Lafargue M. 2018. Oenococcus oeni exopolysaccharide biosynthesis, a tool to improve malolactic starter performance. Frontiers in Microbiology, 9: 1276. doi: 10.1371/journal.pone.0098898

Domingos-Lopes M, Nagy A, Stanton C, Ross P, Gelencsér E, Silva C. 2017. Immunomodulatory activity of exopolysaccharide producing Leuconostoc citreum Strain isolated from Pico cheese. Journal of Functional Foods, 33: 235-243. doi: 10.1016/j.jff.2017.03.054

Durlu-Özkaya F, Aslim B, Ozkaya MT. 2007. Effect of exopolysaccharides (EPSs) produced by Lactobacillus delbrueckii subsp. bulgaricus strains to bacteriophage and nisin sensitivity of the bacteria. LWT - Food Science and Technology, 40(3): 564–568. doi: 10.1016/j.lwt.2005.09.009

Finore I, Di Donato P, Mastascusa V. 2014. Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Marine Drugs, 12: 3005–3024. doi: 10.3390/md12053005

Gezginç Y, Karabekmez-Erdem T, Tatar HD, Ayman S, Ganiyusufoğlu E, Dayısoylu KS. 2022. Health promoting benefits of postbiotics produced by lactic acid bacteria: Exopolysaccharide. Biotech Studies, 31(2): 61-70. doi: 10.38042/biotechstudies.1159166

Hasheminya SM, Dehghannya J. 2020. Novel ultrasound-assisted extraction of kefiran biomaterial, a prebiotic exopolysaccharide, and investigation of its physicochemical, antioxidant and antimicrobial properties. Materials Chemistry and Physics, 243, 122645. doi: 10.1016/j.matchemphys.2020.122645

Huang TY, Huang MY, Tsai CK, Su WT. 2021. Phosphorylation of levan by microwave-assisted synthesis enhanced anticancer ability. Journal of Bioscience and Bioengineering, 131(1), 98–106. doi: 10.1016/j.jbiosc.2020.08.007

Huang JY, Kao CY, Liu WS, Fang TJ. 2017. Characterization of high exopolysaccharide- producing Lactobacillus strains isolated from mustard pickles for potential probiotic applications. International Microbiology, 20: 75–84.

Hubbard C, McNamara JT, Azumaya C. 2012. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. Journal of Molecular Biology, 418: 21–31. doi: 10.1016/j.jmb.2012.01.053

Hussain A, Zia KM, Tabasum S, Noreen A, Ali M, Iqbal R, Zuber M. 2017. Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94:10–27. doi: 10.1016/j.ijbiomac.2016.09.104

Iliev I, Ivanova I, Ignatova C. 2006. Glucansucrases from lactic acid bacteria (LAB). Biotechnology and Biotechnological Equipment, 20(3): 15–20. doi: 10.1080/13102818.2006.10817374

Ismail B, Nampoothiri KM. 2013. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia, 68(6), 1041–1047. doi: 10.2478/s11756-013-0275-2

İspirli H, Özmen D, Yılmaz MT, Sağdıç O, Dertli E. 2020. Impact of glucan type exopolysaccharide (EPS) production on technological characteristics of sourdough bread. Food Control, 107: 106812. doi: 10.1016/j.foodcont.2019.106812

Izuddin WI, Loh TC, Samsudin AA, Foo HL. 2018. In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population. Revista Brasileira de Zootecnia, 47. doi: 10.1590/rbz4720170255

Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim HS, Seo KH. 2017. Characterization and Antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from Kefir. Food Control, 78: 436–442. doi: 10.1016/j.foodcont.2017.02.033

Júnior LM, Vieira RP, Anjos CAR. 2020. Kefiran-based films: Fundamental concepts, formulation strategies and properties. Carbohydrate Polymers, 116609. 10.1016/j.carbpol. 2020.116609

Jurášková D, Ribeiro SC, Silva CCG. 2022. Exopolysaccharides Produced by lactic acid bacteria: from biosynthesis to health-promoting properties. Foods. 8;11(2):156. doi: 10.3390/foods11020156.

Kim EK, Choi EJ. 2010. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(4): 396–405. doi: 10.1016/j.bbadis.2009.12.009

Kılınç AE, Gezginç Y. 2019. Determination of the potential use of exopolysaccharide-producing Streptococcus salivarus ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in yogurt. Kahramanmaraş Sütçü İmam Üniversitesi, Tarım ve Doğa Dergisi, 401-408. doi: 10.18016/ksutarimdoga. vi.566373

Kodali VP, Sen R. 2008. Antioxidant and free radical scavenging activities of an exopolysaccharide froma a probiotic bacterium. Biotechnology Journal: Healthcare Nutrition Technology. 3(2), 245–251. doi: 10.1002/biot.200700208

Korcz E, Kerényi Z, Varga L. 2018. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects. Food and function, 9(6), 3057-3068. doi: 10.1039/C8FO00118A

Kšonžeková P, Bystrický P, Vlčková S, Pätoprstý V, Pulzová L, Mudroňová D, Kubašková T, Csank T, Tkáčiková Ľ. 2016. Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydrate Polymers, 141: 10-19. doi: 10.1016/j.carbpol.2015.12.037

Kumar R, Bansal P, Singh J, Dhanda S. 2020. Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process Biochemistry, 99: 79-86. doi: 10.1016/j.procbio.2020.08.028

Lakra AK, Domdi L, Tilwani YM, Arul V. 2020 Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules, 143:797-80. doi: 10.1016/j.ijbiomac.2019.09.139

Li XH, Lee JH. 2017. Antibiofilm agents: A new perspective for antimicrobial strategy. Journal of Microbiology, 55(10): 753–766. doi: 10.1007/s12275-017-7274-x

Liu CT, Chu FJ, Chou CC, Yu RC. 2011. Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 721(2): 157–162. doi: 10.1016/j.mrgentox.2011.01.005

Llamas-Arriba MG, Puertas AI, Prieto A, López P, Cobos M, Miranda JI, Marieta C, Ruas-Madiedo P, Dueñas MT. 2019. Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocolloids, 89: 613–622. doi: 10.1016/j.foodhyd.2018.10.053

London LE, Kumar AH, Wall R, Casey PG, O'Sullivan O, Shanahan F, Hill C, Cotter PD, Fitzgerald GF, Ross RP, Caplice NM, Stanton C. 2014. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. The Journal of Nutrition,144(12): 1956–1962. doi: 10.3945/jn.114.191627

Mahdhi A, Leban N, Chakroun I, Chaouch MA, Hafsa J, Fdhila K, Mahdouani K, Majdoub H. 2017. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microbial Pathogenesis, 109: 214–220. 10.1016/j.micpath.2017.05.046

Malashree L, Angadi V, Yadav KS, Prabha R. 2019. Postbiotics. One step ahead of probiotics. International Journal of Current Microbiology and Applied Sciences, 8: 2319-7706.

Matsuzaki C, Hayakawa A, Matsumoto K, Katoh T, Yamamoto K, Hisa K. 2015. Exopolysaccharides produced by Leuconostoc mesenteroides strain NTM048 as an immunostimulant to enhance the mucosal barrier and influence the systemic immune response. Journal of Agricultural and Food Chemistry, 63(31): 7009–7015. doi: 10.1021/acs.jafc.5b01960

Mende S, Rohm H, Jaros D. 2020. Lactic acid bacteria: Exopolysaccharides. Reference Module in Food Science, Elsevier.

Miao M, Ma Y, Jiang B, Huang C, Li X, Cui SW, Zhang T. 2014. Structural investigation of a neutral extracellular glucan from Lactobacillus reuteri SK24. 003. Carbohydrate polymers, 106: 384-392. doi: 10.1016/j.carbpol.2014.01.047

Milanović V, Osimani A, Garofalo C, Belleggia L, Maoloni A, Cardinali F, Mozzon M, Foligni R, Aquilanti L, Clementi F. 2020. Selection of Cereal-Sourced Lactic Acid Bacteria as Candidate Starters for the Baking Industry. Plos one. 15(7): e0236190. doi: 10.1371/journal.pone.0236190

Moradi M, Guimarães JT, Sahin S. 2021. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science, 40:33-39. 10.1016/j.cofs.2020.06.001

Nácher-Vázquez M, Ballesteros N, Canales Á, Rodríguez Saint-Jean S, Pérez-Prieto SI, Prieto A, Aznar R, López P. 2015. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 124: 292–301.doi: 10.1016/j.carbpol.2015.02.020

Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR. 2010. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiology Ecology, 72(1): 1-21. doi: 10.1111/j.1574-6941.2010.00837.x

Nguyen DT, Nguyen TH. 2014. Detection on antioxidant and cytotoxicity activities of exopolysaccharides isolated in plant-originated Lactococcus lactis. Biomedical and Pharmacology Journal, 7(1): 33-38. doi: 10.13005/bpj/449

Nguyen PT, Nguyen TT, Bui DC, Hong PT, Hoang QK, Nguyen HT. 2020. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4): 451. doi: 10.3934/microbiol.2020027

Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas- Madiedo P. 2012. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. International Journal of Food Microbiology, 158(2): 155–162. doi: 10.1016/j.ijfoodmicro.2012.07.015

Nouha K, Kumar RS, Balasubramanian S, Tyagi RD. 2018. Critical review of EPS production, synthesis and composition for sludge flocculation. International Journal of Environmental Science, 66: 225-245. doi: 10.1016/j.jes.2017.05.020

Patel S, Majumder A, Goyal A. 2012. Potentials of exopolysaccharides from lactic acid bacteria. Indian Journal of Microbiology, 52(1): 3–12. doi:10.1007/s12088-011-0148-8

Péant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology, 151(6): 1839-1851.doi: 10.1099/mic.0.27852-0

Polak-Berecka M, Choma A, Waśko A, Górska S, Gamian A, Cybulska J. 2014. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate. Polymers, 117: 501-509. doi: 10.1016/j.carbpol.2014.10.006

Rajoka MSR, Wu Y, Mehwish HM, Bansal M, Zhao L. 2020. Lactobacillus Exopolysaccharides: New perspectives on engineering strategies, Physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science and Technology, 103: 36-48. doi: 10.1016/j.tifs.2020.06.003

Rana S, Upadhyay LSB. 2020. Microbial exopolysaccharides: synthesis pathways, types and their commercial applications. International Journal of Biological Macromolecules, 157:577-583. doi: 10.1016/j.ijbiomac.2020.04.084

Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L. 2016. Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification and characterization. International Journal of Biological Macromolecules. 86: 402-407. doi: 10.1016/j.ijbiomac.2016.01.085

Ruas-Madiedo P, De Los Reyes-Gavilán CG. 2005. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. International Journal of Dairy Science, 88(3): 843-856. doi:10.3168/jds.S0022-0302(05)72750-8

Saadat YR, Khosroushahi AY, Gargari BPA. 2019. Comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. CarbohydratePolymers, 217:79-89. doi:10.1016/j.carbpol.2019.04.025

Sandra G, Schwab C, Bello FD, Coffey A, Gänzle M, Arendt E. 2012. Comparison of the impact of dextran and reuteran on the quality of wheat sourdough bread. Journal of Cereal Science, 56(3): 531–537. doi: 10.1016/j.jcs.2012.07.001

Sanlibaba P, Cakmak GA. 2016. Exopolysaccharides production by lactic acid bacteria. Applied Microbiology: Open Access, 2(2). doi: 10.4172/2471-9315.1000115

Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Frontiers in Microbiology, 6, 496. doi: 10.3389/fmicb.2015.00496

Sengül N, Aslím B, Uçar G, Yücel N, Işık S, Bozkurt H, Sakaoğulları Z, Atalay F. 2006. Effects of exopolysaccharide-producing probiotic strains on experimental colitis in rats. Disaeses of the Colon and Rectum, 49(2): 250–258. doi: 10.1007/s10350-005-0267-6

Shao L, Wu Z, Tian F, Zhang H, Liu Z, Chen W, Guo B. 2015. Molecular characteristics of an exopolysaccharide from Lactobacillus rhamnosus KF5 in solution. International Journal of Biological Macromolecules, 72: 1429‒1434. doi: 10.1016/j.ijbiomac.2014.10.015

Smid EJ, Kleerebezem M. 2014. Production of aroma compounds in lactic fermentations. Annual Review of Food Science and Technology, 5(1): 313–326. doi:10.1146/annurev-food-030713-092339

Sungur T, Aslim B, Karaaslan C, Aktas B. 2017. Impact of exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from Human vagina on cervical tumor cells (HeLa). Anaerobe, 47:137–144. doi: 10.1016/j.anaerobe.2017.05.013

Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee Y, Kim JK, Park W, You SG. 2014. Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immuno modulation. International Journal of Biological Macromolecules, 68:233–240. doi: 10.1016/j.ijbiomac.2014.05.005

Taylan O, Yilmaz MT, Dertli E. 2019. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, 136: 436-444. doi: 10.1016/j.ijbiomac.2019.06.078

Thapa D, Zhang H. 2009. Lactobacillus rhamnosus Exopolysaccharide reduces mutagenic potential of genotoxins. International Journal of Probiotics Prebiotics, 4(2),:79–82.

Velasco L, Loeffler M, Torres I, Weiss J. 2021. Influence of Fermentation temperature on in situ heteropolysaccharide formation (Lactobacillus plantarum TMW 1.1478) and texture properties of raw sausages. Food Science and Nutrition, 9(3): 1312-1322. doi:10.1002/fsn3.2054

Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. 2014. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules, 63:133–139. doi: 10.1016/j.ijbiomac.2013.10.036

Wang J, Zhao X, Yang Y, Zhao A, Yang Z. 2015. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74:119–126. doi: 10.1016/j.ijbiomac.2014.12.006

Wang B, Song Q, Zhao F, Xiao H, Zhou Z, Han Y. 2019. Purification and characterization of dextran produced by Leuconostoc pseudomesenteroides PC as a potential exopolysaccharide suitable for food applications. Process Biochemistry, 87:187–195. doi: 10.1016/j.procbio. 2019.08.020

Wei DI, Zhang YC, Hua-Xi YI, Xue H, Shu-Mei W, Zhang LW. 2018. Research methods for structural analysis of lactic acid bacteria induced exopolysaccharides. Chinese Journal of Analytical Chemistry, 46(6): 875-882. doi: 10.1016/S1872-2040(18)61091-6

Werning ML, Notararigo S, Nácher M, Fernández de Palencia P, Aznar R, López P. 2012. Biosynthesis, purification and biotechnological use of exopolysaccharides produced by lactic acid bacteria. Food additives, 83-114.

Wiater A, Szczodrak J, Pleszczyńska M. 2005. Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biologica Hungarica, 56(1–2): 137–150. doi: 10.1556/ABiol.56.2005.1-2.14

Wiater A, Pleszczyńska M, Próchniak K, Szczodrak J. 2012. Structural diversity of streptococcal mutans synthesized under different culture and environmental conditions and its effect on mutanase synthesis. Molecules, 17(10): 11800-11815. doi: 10.3390/molecules171011800

Xu H, Zhu R, Liu W, Gao X. 2015. Prog. Journal of Pharmaceutical Sciences, 5:364‒369.

Xu D, Fels L, Wefers D, Behr J, Jakob F, Vogel RF. 2018. Lactobacillus hordei dextrans induce Saccharomyces cerevisiae aggregation and network formation on hydrophilic surfaces. International Journal of Biological Macromolecules, 115:236–242. doi: 10.1016/j.ijbiomac.2018.04.068

Xu X, Qiao Y, Peng Q, Shi B, Dia VP. 2021. Antioxidant and immunomodulatory properties of partially purified exopolysaccharide from Lactobacillus casei isolated from chinese northeast sauerkraut. Immunological Investigations, 1-18. doi:10.1080/08820139.2020.1869777

Yang Y, Peng Q, Guo Y, Han Y, Xiao H, Zhou Z. 2015. Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut. Carbohydrate Polymers, 133:365–372. doi: 10.1016/j.carbpol.2015.07.061

Ye G, Chen Y, Wang C, Yang R, Bin X. 2018. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. International Journal of Biological Macromolecules,120:1315-1321. doi: 10.1016/j.ijbiomac.2018.09.019

Yildiz H, Karatas N. 2018. Microbial exopolysaccharides: Resources and bioactive properties. Process Biochemistry, 72: 41-46.doi: 10.1016/j.procbio.2018.06.009

Yu W, Chen G, Zhang P, Chen K. 2016. Purification, partial characterization and antitumor effect of an exopolysaccharide from Rhizopus nigricans. International Journal of Biological Macromolecules, 82(7): 299–307. doi: 10.1016/j.ijbiomac.2015.10.005

Zannini E, Waters DM, Coffey A, Arendt EK. 2016. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121–1135. doi: 10.1007/s00253-015-7172-2

Zarour K, Llamas MG, Prieto A, Rúas-Madiedo P, Dueñas MT, de Palencia PF, Aznar R, Kihal, M, López P. 2017. Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydrate Polymers, 174:646–657. doi: 10.1016/j.carbpol.2017.06.113

Zhang Z, Chen Y, Wang R. 2015. The fate of marine bacterial exopolysaccharide in natural marine microbial communities. PLoS One, 10:1–16.doi: 10.1371/journal.pone.0142690

Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules, 54:270–275. doi: 10.1016/j.ijbiomac.2012.12.037

Zhang G, Zhang W, Sun L, Sadiq FA, Yang Y, Gao J, Sang Y. 2019. Preparation screening, production optimization and characterization of exopolysaccharides produced by Lactobacillus sanfranciscensis Ls-1001 isolated from Chinese traditional sourdough. International Journal of Biological Macromolecules, 139:1295-1303. doi: 10.1016/j.ijbiomac.2019.08.077

Zhou X, Hong T, Yu Q, Nie S, Gong D, Xiong T, Xie M. 2017. Exopolysaccharides from Lactobacillus plantarum NCU116 induce C-Jun dependent Fas/fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Scientific Reports, 7(1): 14247. doi: 10.1038/s41598-017-14178-2

Zhou Y, Cui Y, Qu X. 2018. Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: A review, Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.11.093

Downloads

Published

28.02.2023

How to Cite

Karabekmez Erdem, T., Dilşad Tatar, H., Ayman, S., & Gezginç, Y. (2023). Exopolysaccharides from Lactic Acid Bacteria: A Review on Functions, Biosynthesis and Applications in Food Industry. Turkish Journal of Agriculture - Food Science and Technology, 11(2), 414–423. https://doi.org/10.24925/turjaf.v11i2.414-423.5213

Issue

Section

Review Articles