Antimicrobial Resistance Properties, Biofilm, and mecA Gene Presence in Staphylococcus Aureus Isolated from Raw Milk Sold in Van, Türkiye

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i2.355-362.5817

Keywords:

Biofilm genes, mecA, Staphylococcus aureus

Abstract

Staphylococcus aureus can cause foodborne poisoning and can form biofilms, reducing enterotoxin production and the penetration rate of antibiotics. Therefore, infections and poisonings caused by S. aureus can be difficult to treat. The aim of this study was to investigate the antibiotic resistance levels of S. aureus isolates obtained from raw milk and the presence of biofilm and mecA gene and to reveal the risk to public health. S. aureus was isolated in 30 (30%) of 100 raw milk samples obtained from Van province. A total of 48 S. aureus isolates were obtained from 30 samples. All 48 isolates (100%) obtained were resistant to penicillin G and cefoxitin, 4 (8.33%) to sulfamethoxazole-trimethoprim and chloramphenicol, and 25 (52.08%) to erythromycin. All of the isolates (100%) were found to be susceptible to ceftriaxone. In addition, 26 (54.16%) of the obtained isolates were found to be resistant to at least 3 antibiotics. The strains found to be resistant to penicillin and cefoxitin were also intermediate to at least one of the antibiotics. Biofilm genes were detected in 18 of the S. aureus isolates (37.5%). Twelve of the biofilm-forming isolates contain icaA (66.6%), 3 contain icaD (16.6%) and the other 3 contain bap genes (16.6%). Three of the isolates contain icaA and icaD genes and the other three isolates contain icaA and bap genes together. It was determined that only 2 of the isolates contained the mecA gene. The isolates containing the mecA gene also contained the icaA and icaD genes. In conclusion, the fact that S. aureus isolates had high antibiotic resistance, biofilm-forming genes, and methicillin resistance genes showed that raw milk may be a serious public health problem.

References

Akindolire MA, Babalola OO, Ateba CN. 2015. Detection of Antibiotic Resistant Staphylococcus aureus from Milk: A Public Health Implication. IJERPH, 12(9): 10254-10275. https://doi.org/10.3390/ijerph120910254

Argudín AM, Mendoza MC, Rodicio MR. 2010. Food Poisoning and Staphylococcus aureus Enterotoxins. Toxins, 2: 1751-1773. https://doi.org/10.3390/toxins2071751

Asadi S, Kargar M, Solhjoo K, Najafi A, Ghorbani-Dalini S. 2014. The association of virulence determinants of uropathogenic Escherichia coli with antibiotic resistance. Jundishapur J Microbiol. 7: e9936. https://doi.org/10.5812/jjm.9936

Ateba CN, Mbewe M, Moneoang M S, Bezuidenhout CC. 2010. Antibiotic-resistant Staphylococcus aureus isolated from milk in the Mafikeng Area, North West province, South Africa: Research article. S Afr J Sci, 106(11): 1-6. https://doi.org/10.10520/EJC96992

Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LTT, Hamat RA, Karunanidhi A, Ali AM, Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Seng JSC, Nathan JJ, Pei Pei C. 2012. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J BioMed Biotechnol, https://doi.org/10.1155/2012/976972

Avila-Novoa MG, Iñíguez-Moreno M, Solís-Velázquez OA González-Gómez JP, Guerrero-Medina PJ, Gutiérrez-Lomelí M. 2018. Biofilm Formation by Staphylococcus aureus Isolated from Food Contact Surfaces in the Dairy Industry of Jalisco, Mexico. J Food Qual, e1746139. https://doi.org/10.1155/2018/1746139

Aydin A, Muratoglu K, Sudagidan M, Bostan K, Okuklu B, Harsa S. 2011. Prevalence and antibiotic resistance of foodborne Staphylococcus aureus isolates in Turkey. Foodborne Path Dis, 8: 63-69. https://doi.org/10.1089/fpd.2010.0613

Bauer RW, Kirby MDK, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 45:493-496.

Begum HA, Uddin MS, Islam MJ, Nazir KH, Islam MA, Rahman MT. 2007. Detection of biofilm producing coagulase positive Staphylococcus aureus from bovine mastitis, their pigment production, hemolytic activity and antibiotic sensitivity pattern. J Bangladesh Soc Agric Sci Technol, 4: 97-100.

Bennett RW, Hait JM, Tallent SM. 2013. Staphylococcus aureus. In: Labbé RG, García S (editors). Guide to Foodborne Pathogens, 2nd ed, Wiley-Blackwell: India.

Bergonier D, De Cremoux R, Rupp R, Lagriffoul G, Berthelot X. 2003. Mastitis of dairy small ruminants. Veterinary Research, 34: 689e716.

Bhattacharya M Wozniak DJ, Stoodley P, Hall-Stoodley L. 2015. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev. Anti-Infect Ther, 13: 1499-1516. https://doi.org/10.1586/14787210.2015.1100533.

Bissong MEA, Ateba CN. 2020. Genotypic and phenotypic evaluation of biofilm production and antimicrobial resistance in Staphylococcus aureus isolated from milk, North West Province, South Africa. Antibiotics, 9(4): 156. https://doi.org/10.3390/antibiotics9040156

Budak O. 2008. Isolation and Identification of S. aureus, Detect These Bacteria Enterotoxins and Determine Number of somatic Cells and Antibiotic from Mastitic Cows’ Milk in Kocaeli Region and Enviromental Effects in the Milk. MSc Thesis, Gebze Institute of Technology, Institute of Science and Engineering.

Chang Y, Wang PC, Ma HM, Chen SY, Fu YH, Liu YY, Wang X, Yu GC, Huang T, Hibbs DE, Zhoua H, Chena W, Lina J, Wange C, Zhengd J, Suna P. 2019. Design, synthesis and evaluation of halogenated furanone derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. Eur J. Pharm Sci, 140: 105058. https://doi.org/10.1016/j.ejps.2019.105058

Chao G, Zhou X, Jiao X, Qian X, Xu L. 2007. Prevalance and antimicrobial re- sistance of foodborne pathogens isolated from food products in China. Foodborne Pathog Dis, 4: 277-284. https://doi.org/10.1089/fpd.2007.0088

Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, Kang JH, Shin WS, Kang MW. 2003. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci, 18: 631-636. https://doi.org/10.3346/jkms.2003.18.5.631

CLSI, 2020. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, USA.

Corrente M, Normanno G, Martella V Bellacicco AL, Quaglia NC, D’Abramo M, Buonavoglia C. 2007. Comparison of methods for the detection of methicillin resistance in Staphylococcus aureus isolates from food products. Lett Appl Microbiol, 45: 535-539. https://doi.org/10.1111/j.1472-765X.2007.02226.x

Cosgrove SE. 2006. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stays, and health care costs. Genet Mol Res, 42: S82-S89. https://doi.org/10.1086/499406

Cucarella C, Solano C, Valle J, Amorena B, Lasa Í, Penadés JR. 2001. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation. J Bacteriol, 183(9): 2888-2896. https://doi.org/10.1128/JB.183.9.2888-2896.2001

Cucarella C, Tormo MA, Ubeda C, Trotonda MP, Monzón M, Peris C, Amorena B, Lasa I, Penadés JR. 2004. Role of biofilm-Associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun, 72: 2177–2185. https://doi.org/10.1128/IAI.72.4.2177-2185.2004

Çiftçi İH, Altindiş M, Çetinkaya Z, Aşık G, Aktepe OC. 2009. Investigation of mecA genes in Staphylococcus strains isolated from clinical samples. The Medical Journal of Kocatepe, 10(1): 17-20.

Darwish SF, Asfour HA. 2013. Investigation of biofilm forming ability in Staphylococci causing bovine mastitis using phenotypic and genotypic assays. Sci World J, https://doi.org/10.1155/2013/378492

De la Fuente-Nú˜nez C, Reffuveille F, Fernandez L, Honcock REW. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opi Microbiol, 16:580e589. https://doi.org/10.1016/j.mib.2013.06.013

Duyuk G. 2015. Detection of Staphylococcus aureus and Stapylococcal Enterotoxins in Raw Milk Samples, MSc Thesis, Adnan Menderes Unıversity, Aydın, Türkiye, 2015.

El-Jakee JK, Aref NE, Gomaa A, El-Hariri MD, Galal HM, Omar SA, Ahmed S. 2013. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. International Journal of Veterinary Science and Medicine. 1-5. https://doi.org/10.1016/j.ijvsm. 2013.05.006

Felipe V, Morgante CA, Somale PS, Varroni F, Zingaretti ML, Bachetti RA, Correa SG, Porporatto C. 2017. Evaluation of the biofilm forming ability and its associated genes in Staphylococcus species isolates from bovine mastitis in Argentinean dairy farms. Microbial Pathogenesis, 104: 278-286. https://doi.org/10.1016/j.micpath.2017.01.047

Gazi DU. 2021. Biofilm Assessment of Staphylococcus aureus From Different Clinical Specimens. Ph.D. Thesis, Near East University, Cyprus.

Girardini LK, Paim DS, Ausani TC, Lopes GV, Pellegrini DCP, Brito MAV, Cardoso M. 2016. Antimicrobial resistance profiles of Staphylococcus aureus clusters on small dairy farms in southern Brazil. Pesquisa Veterinária Brasileira, 36: 951-956. https://doi.org/10.1590/S0100-736X20160010000 06

Gowrishankar S, Kamaladevi A, Balamurugan K, Pandian SK. 2016. In Vitro and In Vivo Biofilm Characterization of Methicillin-Resistant Staphylococcus aureus from Patients Associated with Pharyngitis Infection. BioMed Res Int, e1289157. https://doi.org/10.1155/2016/1289157

Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K. 2003. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic Island SCC. Drug Resist Updat, 6: 41-52. https://doi.org/10.1016/S1368-7646(03)00003-7

Jamali H, Paydar M, Radmehr B, Ismail S, Dadrasnia A. 2015. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control, 54: 383-388. https://doi.org/10.1016/j. foodcont.2015.02.013

Johler S, Macori G, Bellio A, Acutis PL, Gallina S, Decastelli, L. (2018). Short communication: Characterization of Staphylococcus aureus isolated along the raw milk cheese production process in artisan dairies in Italy. J Dairy Sci, 101(4): 2915-2920. https://doi.org/10.3168/jds.2017-13815

Jørgensen HJ, Mørk T, Høgåsen HR, Rørvik LM Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. J Appl Microbiol, 99(1): 158-166. https://doi.org/10.1111/j.1365-2672.2005.02569.x

Keyvan E. 2019. Detection of antibiotic resistance properties of Staphylococcus aureus isolated from raw milk samples. Journal of the Turkish Veterinary Medical Society, 90(1): 9-14. https://doi.org/10.33188/vetheder.475938

Khoramrooz SS, Mansouri F, Marashifard M, Malek Hosseini SAA, Akbarian-Chenarestane-Olia F, Ganavehei B, Gharibpour F, Shahbazi A, Mirzaii M, Darban-Sarokhalil D. 2016. Detection of biofilm related genes, classical enterotoxin genes and agr typing among Staphylococcus aureus isolated from bovine with subclinical mastitis in southwest of Iran. Microbial Pathogenesis, 97: 45–51. https://doi.org/10.1016/j.micpath.2016.05.022

Klein G. 2007. Antibiotika-Resistenzen Bei Lebensmittelinfectionserregern. Handbuch Lebensmittelhygiene. B. Behr’s Verlag GmbH & Co. KG, Hamburg. pp. 88-97.

Kou X, Cai H, Huang S, Ni Y, Luo B, Qian H, Ji H, Wang X. 2021. Prevalence and Characteristics of Staphylococcus aureus Isolated from Retail Raw Milk in Northern Xinjiang, China. Front Microbiol, 12. https://www.frontiersin. org/articles/10.3389/fmicb.2021.705947

Landers TF, Cohen B, Wittum TE, Larson EL. 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep, 127(1): 4-22. https://doi.org/10.1177/003335491212700103

Lasa I, Penades JR. 2006. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol, 157: 99-107. https://doi.org/10.1016/j.resmic.2005.11.003

Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. 2018. Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4(1): 18033. https://doi.org/10.1038/nrdp.2018.33

Liu H, Li S, Meng L, Dong L, Zhao S, Lan X, Wang J, Zheng N. 2017. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. J Dairy Sci, 100(11): 8796-8803. https://doi.org/10.3168/jds.2017-13370

Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. Section 2: Bacteriology. In Clinical Veterinary Microbiology, 2nd ed.; China: Mosby Elsevier, pp. 105-121. ISBN 9780723432371

Marques VF, Motta CCD, Soares BDS, Melo DAD, Coelho SDMDO, Coelho IDS Barbosa HS, Souza MMSD. 2017. Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol, 48(1): 118-124. https://doi.org/10.1016/j.bjm. 2016.10.001

Marshall BM, Levy SB. 2011. Food animals and antimicrobials: Impacts on human health. Clin Microbio Rev, 24: 718–733. https://doi.org/10.1128/CMR.00002-11

Montville TJ. 2012. Biosafety challenges for the food microbiology laboratory. J Food Safety, 32: 184-188. https://doi.org/10.1111/j.1745-4565.2012.00366.x

Mulcahy ME, McLoughlin RM. 2016. Staphylococcus aureus and influenza a virus: partners in coinfection. MBio, 7(6): e02068-16. https://doi.org/10.1128/mBio.02068-16

Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. 2018. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J General Med, 11: 25–32. https://doi.org/10.2147/IJGM.S153268

Normanno G, La Salandra G, Dambrosio A, Quaglian C, Corrente M, Parisi A, Santagada G, Firinu A, Crisetti E, Celano GV. 2007. Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int J Food Microbiol, 115290-115296. https://doi.org/10.1016/j.ijfoodmicro.2006.10.049 Get rights and content

Omwenga I, Aboge GO, Mitema ES Obiero G, Ngaywa C, Ngwili N, Wamwere G, Wainaina M, Bett B. 2021. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus, Including Methicillin-Resistant Strains in Raw Milk of Livestock from Northern Kenya. Microb Drug Resist, 27(6): 843-854. https://doi.org/10.1089/mdr.2020.0252

Osman K, Alvarez-Ordonez A, Ruiz L, Badr J, ElHofy F, Al-Maary KS, Moussa IMI, Hessain AM, Orabi A, Saad A, Elhadidy M. 2017. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Ann Clin Microb Anti, 16(1): 1-10. 10.1186/s12941-017-0210-4

Paharik AE, Horswill AR. 2016. The staphylococcal biofilm: adhesins, regulation, and host response. Virulence mechanisms of bacterial pathogens, 529-566. https://doi.org/10.1128/9781555819286.ch19

Parisi A, Caruso M, Normanno G, Latorre L, Sottili R, Miccolupo A, Fraccalvieri R, Santagada G. 2016. Prevalence, antimicrobial susceptibility and molecular typing of Methicillin-Resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy. Food Microbiology. 58: 36-42. https://doi.org/10.1016/j.fm.2016.03.004

Peacock SJ, Paterson GK. 2015. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Ann Rev Biochem, 84(1): 577-601. https://doi.org/10.1146/annurev-biochem-060614-034516

Peles F, Wagner M, Varga L, Hein I, Rieck P, Gutser K, Keresztúri P, Kardos G, Turcsányi I, Béri B, Szabó A. 2007. Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int J Food Microbiol. 118(2): 186-193. https://doi.org/10.1016/j.ijfoodmicro.2007.07.010

Pereira V, Lopes C, Castro A, Silva J, Gibbs P, Teixeira P. 2009. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiology, 26(3): 278-282. https://doi.org/10.1016/j.fm.2008.12.008

Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL. 2014. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. MBio, 5(2). https://doi.org/10.1128/mBio.00956-13

Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M Lagacé, J. 2001. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol, 39(7): 2584-2589. https://doi.org/10.1128/JCM.39.7.2584-2589.2001

Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, Hay S I, Jiwakanon J, Kakkar M, Kariuki S, Laxminarayan R, Lubroth J, Magnusson U, Thi Ngoc P, Van Boeckel T P, Woolhouse MEJ. 2016. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg, 110: 377-380. https://doi.org/10.1093/trstmh/trw048

Ryder VJ, Chopra I, O’Neill AJ. 2012. Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PloS one. 7(10): e47695. https://doi.org/10.1371/journal.pone.0047695

Salimena AP, Lange CC, Camussone C, Signorini M, Calvinho L F, Brito MA, Borges CAV, Guimarães AS, Ribeiro JB, Mendonça LC, Piccoli RH. 2016. Genotypic and phenotypic detection of capsular polysaccharide and biofilm formation in Staphylococcus aureus isolated from bovine milk collected from Brazilian dairy farms. Vet Res Commun, 40(3): 97-106.

Schleifer KH, Bell JA. 2009. Staphylococcaceae. In: Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (editors). Bergey’s Manual of Systematic Bacteriolog, 2nd ed. USA: Springer.

Sedarat Z, Taylor-Robinson AW. 2022. Biofilm formation by pathogenic bacteria: applying a Staphylococcus aureus model to appraise potential targets for therapeutic intervention. Pathogens, 11(4): 388. https://doi.org/10.3390/pathogens1 1040388

Sharma V, Sharma S, Dahiya DK, Khan A, Mathur M, Sharma A. 2017. Coagulase gene polymorphism, enterotoxigenecity, biofilm production, and antibiotic resistance in Staphylococcus aureus isolated from bovine raw milk in North West India. Ann Clin Microb Ant. 16(1): 65. https://doi.org/10.1186/s12941-017-0242-9

Spanu V, Spanu C, Virdis S, Cossu F, Scarano C, de Santis EPL. 2012. Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep’s milk cheese. Int J Food Microbiol, 153: 53–57. https://doi.org/10.1016/j.ijfoodmicro.2011.10.015

SPSS, 2006. IBM SPSS statistics version 13.0 for Windows. New York: IBM.

Stapleton PD, Taylor PW. 2002. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science Progress, 85(1): 57-72. https://doi.org/10.3184/00 3685002783238870

Swenson JM, Lonsway D, McAllister S, Thompson A, Jevitt L, Zhu W, Patel JB. 2007. Detection of mecA-mediated resistance using reference and commercial testing methods in a collection of Staphylococcus aureus expressing borderline oxacillin MICs. Diagn Micr Infec Dis, 58(1): 33-39. https://doi.org/10.1016/j.diagmicrobio.2006.10.022

Şahin K. 2017. TÜBA-İnsan ve Hayvan Sağlığında Akılcı Antibiyotik Kullanımı ve Antibiyotik Dirençlilik Raporu. TÜBA-Gıda ve Beslenme Çalışma Grubu. Türkiye Bilimler Akademisi Yayınları.

TS, 2021. Turkish Standard. Microbiology of the food chain - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 1: Method using Baird-Parker agar medium. (TS EN ISO 6888-1), Turkish Standards Institution, Ankara, Türkiye.

Tsilochristou O, du Toit G, Sayre PH, Roberts G, Lawson K, Sever ML, Bahnson HT, Radulovic S, Basting M, Plaut M, Lack G, Chan S, Fox A, Fisher H, Abraham M Adam M, Coverdale L, Duncan C, Nixon A, Mason T. 2019. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immun, 144(2): 494–503. https://doi.org/10. 1016/j.jaci.2019.04.025

Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. 2003. Quorum sensing control of biofilm factors in Staphylococcus epidermidis. J Infec Dis, 188: 706-718. https://doi.org/10.1086/377239

Wang W, Lin X, Jiang T, Peng Z, Xu J, Yi L, Li F, Fanning S, Baloch Z. 2018. Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China. Front Microbiol, 9: 11-23. https://doi.org/10.3389/fmicb.2018.01123.

Yamamoto T, Hung WC, Takano T, Nishiyama A. 2013. Genetic nature and virulence of community-associated methicillin-resistant Staphylococcus aureus. BioMedicine, 3(1): 2-18. https://doi.org/10.1016/j.biomed.2012.12.001

Zhang P, Miao X, Zhou L, Cui B, Zhang J, Xu X, Wu C, Peng X, Wang X. 2020. Characterization of Oxacillin-Susceptible mecA-Positive Staphylococcus aureus from Food Poisoning Outbreaks and Retail Foods in China. Foodborne Pathog Disease, 17(11): 728-734. https://doi.org/10.1089/fpd. 2019.2774

Downloads

Published

28.02.2023

How to Cite

Tuncay, R. M., & Sancak, Y. C. (2023). Antimicrobial Resistance Properties, Biofilm, and mecA Gene Presence in Staphylococcus Aureus Isolated from Raw Milk Sold in Van, Türkiye. Turkish Journal of Agriculture - Food Science and Technology, 11(2), 355–362. https://doi.org/10.24925/turjaf.v11i2.355-362.5817

Issue

Section

Research Paper