Effect of Torrefaction on Energy Properties of Millet Stalk
DOI:
https://doi.org/10.24925/turjaf.v11i2.390-395.5988Keywords:
Tarımsal biyokütle, akdarı sapı, Panicum miliaceum L., torrefaksiyon, biyo enerji, biyo kömür, biyo yakıt, agro biomas, millet stalk, torrefaction, bioenergy, biochar, biofuel.Abstract
The paper presents tests connected to the torrefaction of agro-biomass residues as a case of biomass valorisation. The aim of the work is to compare the changes in energy and chemical properties of millet stalk (Panicum miliaceum L.) before and after the torrefaction process. The torrefaction of the millet stalk was done by using a scale reactor in two temperatures, 275oC and 300oC, in an N2 atmosphere. The millet stalk torrefied at 300oC has more promising parameters, i.e., higher heating value HHV 24,57 MJ/kg, the content of carbon 64,90% and energy density 1,42 compering to biochar produced at 275oC - 22,57 MJ/kg, 60,90% and 1,31 respectively. The results showed that torrefaction improves the parameters of the millet stalk for higher-quality biofuel, which can be used for heat generation.
References
Barkov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R. 2019. Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renewable Energy, 142: 624-642. https://doi.org/10.1016/j.renene.2019.04.068
Bioenergy Europe Bulletin. 2021. The European Biomass Association. Available from: www.bioenergyeurope.org [Accessed on 20 December 2021]
Bridgeman TG, Jones JM, Shield I, Williams PT. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87: 844-856. https://doi.org/10.1016/j.fuel.2007.05.041
Chen WH, Kuo PC, Liu SH, Wu W. 2014. Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy, 71: 40-48. https://doi.org/10.1016/j.energy.2014.03.117
Chen WH, Peng J, Bi XT. 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44: 847-866. https://doi.org/10.1016/j.rser.2014.12.039
Chen Y, Yang H, Yang Q, Hao H, Zhu B, Chen H. 2014a. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation. Bioresource Technology, 156: 70–77. https://doi.org/10.1016/j.biortech.2013.12.088
Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH. 2009. Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis, 86: 331-340. https: //doi.org/10.1016/j.jaap.2009.08.006
FAO. 2021. FAOSTAT database Rome: Food and Agriculture Organization. Available from: https://www.fao.org/faostat [Accessed on 20 December 2021]
Felfri FF, Luengo CA, Suarez JA, Beaton PA. 2005. Wood briquette torrefaction. Energy Substantiable Development, 9: 19-22. https://doi.org/10.1016/S0973-0826(08)60519-0
Grigiante M, Antolini D. 2015. Mass yield as guide parameter of the torrefaction process. An experimental study of the solid fuel properties referred to two types of biomass. Fuel, 153: 499-509. https://doi.org/10.1016/j.fuel.2015.03.025
Oni BA, Ollubukola O, Olawole OO. 2019. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64 (2): 222-236. https://doi.org/10.1016/j.aoas.2019.12.006
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. 2022. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20: 2385-2485. https://doi.org/10.1007/s10311-022-01424-x
Phanphanich M, Mani S. 2011. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresources Technology, 102(2): 1246-1253. https://doi.org/10.1016/j.biortech.2010.08.028
Poudel J, Oh SC. 2014. Effect of torrefaction on the properties of corn stalk to enhance solid fuel qualities. Energies, 7(9): 5586-5600. https://doi.org/10.3390/en7095586
Sabil KM, Aziz MA, BhajanLal U, Yoshimitsu U. 2013. Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass and Bioenergy, 56: 351-360. https://doi.org/10.1016/j.biombioe.2013.05.015
Simonic M, Goricanec D, Urbancle D. 2020. Impact of torrefaction on biomass properties depending on temperature and operation time. Science of The Total Environment, 740: 140086. https://doi.org/10.1016/j.scitotenv.2020.140086
Szufa S, Wielgosiński G, Piersa P, Czerwińska M, Dzikuć M, Adrian Ł, Lewandowska W, Marczak M. 2020. Torrefaction of straw from oats and maize for use as a fuel and additive to organic fertilizers-TGA analysis, kinetics as products for agricultural purposes. Energies, 13(8): 2064. https://doi.org/10.3390/en13082064
TURKSTAT. 2021. Turkish Statistical Institute. Available from: https://data.tuik.gov.tr [Accessed on 20 December 2021]
Wzorek M, Junga R, Yilmaz E, Bozhenko B. 2021. Thermal decomposition of olive-mill byproducts: A TG-FTIR approach. Energies, 14(14): 4123. https://doi.org/10.3390/en14144123
Wzorek M, Troniewski L. 2007. Application of Sewage Sludge as a Component of Alternative Fuel. In: Dudzinska M, Pawłowski L. (editors). Environmental Engineering. pp. 311–316. ISBN: 978-0-415-40818-9
Yilmaz E, Wzorek M, Selin AS. 2018. Co-pelletization of sewage sludge and agricultural wastes. Journal for Environmental Management, 216: 169-175. https://doi.org/10.1016/j.jenvman.2017.09.012
Zhang S, Su Y, Ding K, Zhu S, Zhang H, Liu X. 2018. Effect of inorganic species on torrefaction process and product properties of rice husk. Bioresource Technology, 265: 450-455. https://doi.org/10.1016/j.biortech.2018.06.042.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.