Sustainable Sources of Bioactive Peptides: Food Processing By-products and Wastes

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i5.855-866.6401

Keywords:

Bioactive peptid, by-product, food waste, health, sustainable

Abstract

Food waste and by-products are protein-rich sources and represent an important alternative in the search for new strategies to produce compounds with bioactivity from protein hydrolysates. Several studies have shown that by-products and wastes from food processing industries can be utilised as potential sources of bioactive compounds that have an important application in the treatment of various disorders. Bioactive peptides, defined as small fractions of a certain number of amino acids encrypted in proteins, have high potential as a safe, natural, and cost-effective alternative to synthetic drugs to prevent or treat these diseases. By-products and wastes represent a relatively inexpensive source, so their utilisation for the production of bioactive peptides not only leads to a reduction in production costs but is also very important for the development of high value-added nutritional by-products. This practice also contributes to reduce the problem of waste disposal. In this context, the aim of this study was to review the current studies on various food processing by-products and wastes that can be used in the production of bioactive peptides, the processes of obtaining protein hydrolysate from these products and the health benefits of these peptides.

References

Adje, E. Y., Balti, R., Kouach, M., Dhulster, P., Guillochon, D., & Nedjar-Arroume, N. (2011). Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. International Journal of Biological Macromolecules, 49(2). https://doi.org/10.1016/j.ijbiomac.2011.04.004

Adje, E. Y., Balti, R., Kouach, M., Guillochon, D., & Nedjar-Arroume, N. (2011). α 67-106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. European Food Research and Technology, 232(4). https://doi.org/10.1007/s00217-011-1430-z

Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98. https://doi.org/10.1016/j.fbp.2016.02.003

Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15). https://doi.org/10.1007/s00216-018-0974-1

Alemán, A., Gómez-Guillén, M. C., & Montero, P. (2013). Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Research International, 54(1). https://doi.org/10.1016/j.foodres.2013.08.027

Aluko, R. E., Girgih, A. T., He, R., Malomo, S., Li, H., Offengenden, M., & Wu, J. (2015). Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International, 77. https://doi.org/10.1016/j.foodres.2015.03.029

Amorim, M. M., Pereira, J. O., Monteiro, K. M., Ruiz, A. L., Carvalho, J. E., Pinheiro, H., & Pintado, M. (2016). Antiulcer and antiproliferative properties of spent brewer’s yeast peptide extracts for incorporation into foods. Food and Function, 7(5). https://doi.org/10.1039/c6fo00030d

Banerjee, P., & Shanthi, C. (2012). Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochemistry, 47(12). https://doi.org/10.1016/j.procbio.2012.09.012

Barberis, S. E., Origone, A. L., Adaro, M. O., & Bersi, G. (2018). Bioactive Peptides as Functional Food Ingredients. Role of Materials Science in Food Bioengineering. https://doi.org/10.1016/B978-0-12-811448-3.00005-X

Batish, I., Brits, D., Valencia, P., Miyai, C., Rafeeq, S., Xu, Y., Galanopoulos, M., Sismour, E., & Ovissipour, R. (2020). Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects, 11(12). https://doi.org/10.3390/insects11120876

Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3). https://doi.org/10.1111/1541-4337.12014

Boer, R. De. (2014). From milk by-products to milk ingredients: upgrading the cycle. John Wiley & Sons.

Bravo, F. I., Mas-Capdevila, A., Margalef, M., Arola-Arnal, A., & Muguerza, B. (2019). Novel Antihypertensive Peptides Derived from Chicken Foot Proteins. Molecular Nutrition and Food Research, 63(12). https://doi.org/10.1002/mnfr.201801176

Catiau, L., Traisnel, J., Chihib, N. E., Le Flem, G., Blanpain, A., Melnyk, O., Guillochon, D., & Nedjar-Arroume, N. (2011). RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides, 32(7). https://doi.org/10.1016/j.peptides.2011.05.021

Catiau, L., Traisnel, J., Delval-Dubois, V., Chihib, N. E., Guillochon, D., & Nedjar-Arroume, N. (2011). Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides, 32(4). https://doi.org/10.1016/j.peptides.2010.12.016

Cermeño, M., Connolly, A., O’Keeffe, M. B., Flynn, C., Alashi, A. M., Aluko, R. E., & FitzGerald, R. J. (2019). Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods, 60. https://doi.org/10.1016/j.jff.2019.103455

Cermeño, M., Kleekayai, T., Amigo-Benavent, M., Harnedy-Rothwell, P., & FitzGerald, R. J. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41(20). https://doi.org/10.1002/elps.202000153

Chai, T. T., Xiao, J., Mohana Dass, S., Teoh, J. Y., Ee, K. Y., Ng, W. J., & Wong, F. C. (2021). Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chemistry, 340. https://doi.org/10.1016/j.foodchem.2020.127876

Chakrabarti, S., Guha, S., & Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11). https://doi.org/10.3390/nu10111738

Chang, C. Y., Wu, K. C., & Chiang, S. H. (2007). Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry, 100(4). https://doi.org/10.1016/j.foodchem.2005.12.019

Chen, P. J., Tseng, J. K., Lin, Y. L., Wu, Y. H. S., Hsiao, Y. T., Chen, J. W., & Chen, Y. C. (2017). Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Antifibrosis. Journal of Agricultural and Food Chemistry, 65(24). https://doi.org/10.1021/acs.jafc.7b01403

Cho, H. R., & Lee, S. O. (2020). Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Research International, 133. https://doi.org/10.1016/j.foodres.2020.109194

Chou, C. H., Wang, S. Y., Lin, Y. T., & Chen, Y. C. (2014). Antioxidant activities of chicken liver hydrolysates by pepsin treatment. International Journal of Food Science and Technology, 49(7). https://doi.org/10.1111/ijfs.12471

Cian, R. E., Garzón, A. G., Martínez-Augustin, O., Botto, C. C., & Drago, S. R. (2018). Antithrombotic Activity of Brewers’ Spent Grain Peptides and their Effects on Blood Coagulation Pathways. Plant Foods for Human Nutrition, 73(3). https://doi.org/10.1007/s11130-018-0682-1

Collinder, E., Nyberg, F., Sanderson-Nydahl, K., Gottlieb-Vedi, M., & Lindholm, A. (2005). The opioid haemorphin-7 in horses during low-speed and high-speed treadmill exercise to fatigue. Journal of Veterinary Medicine Series A: Physiology Pathology Clinical Medicine, 52(4). https://doi.org/10.1111/j.1439-0442.2005.00712.x

Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2014). In vitro α-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers’ spent grain protein hydrolysates. Food Research International, 56. https://doi.org/10.1016/j.foodres.2013.12.021

Daroit, D. J., & Brandelli, A. (2021). In vivo bioactivities of food protein-derived peptides – a current review. Current Opinion in Food Science, 39. https://doi.org/10.1016/j.cofs.2021.01.002

Edgar Zapata Montoya, J., & Franco Sanchez, A. (2022). The Hydrolysates from Fish By-Product, An Opportunity Increasing. https://doi.org/10.5772/intechopen.102348

Ennaas, N., Hammami, R., Beaulieu, L., & Fliss, I. (2015). Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochemical and Biophysical Research Communications, 462(3). https://doi.org/10.1016/j.bbrc.2015.04.091

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M. C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2-3). https://doi.org/10.1016/j.foodchem.2012.10.133

Esfandi, R., Willmore, W. G., & Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279. https://doi.org/10.1016/j.foodchem.2018.11.110

Fan, X., Bai, L., Mao, X., & Zhang, X. (2017). Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochemistry, 60. https://doi.org/10.1016/j.procbio.2017.05.018

Finoulst, I., Pinkse, M., Van Dongen, W., & Verhaert, P. (2011). Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. Journal of Biomedicine and Biotechnology, 2011. https://doi.org/10.1155/2011/245291

Fu, Z., & Lin, J. (2017). An overview of bioinformatics tools and resources in allergy. Methods in Molecular Biology, 1592. https://doi.org/10.1007/978-1-4939-6925-8_18

Fukami, H. (2010). Functional foods and biotechnology in Japan. Biotechnology in Functional Foods and Nutraceuticals. https://doi.org/10.1201/9781420087123

Gobbetti, M., Minervini, F., & Rizzello, C. G. (2004). Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology, 57(2-3). https://doi.org/10.1111/j.1471-0307.2004.00139.x

Gomez-Guillen, M. C., Gimenez, B., Lopez-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8). https://doi.org/10.1016/j.foodhyd.2011.02.007

Görgüç, A. & Yılmaz, F. M. (2019). Investigating the recovery potential of protein and antioxidant compounds from sesame bran using selected basic component analyses. Turkish Journal of Agriculture‐Food Science and Technology, 7(4), 624-630. https://doi.org/10.24925/turjaf.v7i4.624-630.2347

Görgüç, A., Bircan, C., & Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283. https://doi.org/10.1016/j.foodchem.2019.01.077

Görgüç, A., Gençdağ, E., & Yılmaz, F. M. (2020). Recovery of Bioactive Peptides from Food Wastes and Their Bioavailability Properties. Turkish Journal of Agriculture - Food Science and Technology, 8(4).

Görgüç, A., Özer, P., & Yılmaz, F. M. (2020). Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. Journal of Food Processing and Preservation, 44(1). https://doi.org/10.1111/jfpp.14304

Hall, F., Johnson, P. E., & Liceaga, A. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chemistry, 262. https://doi.org/10.1016/j.foodchem.2018.04.058

Han, R., Hernández Álvarez, A. J., Maycock, J., Murray, B. S., & Boesch, C. (2021). Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates – Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4. https://doi.org/10.1016/j.crfs.2021.03.001

Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2), 163-169. https://doi.org/10.1016/J.COPBIO.2007.01.013

He, X. Q., Cao, W. H., Pan, G. K., Yang, L., & Zhang, C. H. (2015). Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. Journal of the Science of Food and Agriculture, 95(7). https://doi.org/10.1002/jsfa.6859

Heffernan, S., Giblin, L., & O’Brien, N. (2021). Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chemistry, 359. https://doi.org/10.1016/j.foodchem.2021.129852

Hernández-Ledesma, B., Dávalos, A., Bartolomé, B., & Amigo, L. (2005). Preparation of Antioxidant Enzymatic Hydrolysates from α-Lactalbumin and β-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 53(3), 588-593. https://doi.org/10.1021/JF048626M

Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. Small Ruminant Research, 101(1-3). https://doi.org/10.1016/j.smallrumres.2011.09.040

Herrera-Ponce, A. L., Alarcón-Rojo, A. D., Salmeron, I., & Rodríguez-Figueroa, J. C. (2019). Physiological health effects of whey protein-derived bioactive peptides: A review. Revista Chilena de Nutricion, 46(2). https://doi.org/10.4067/s0717-75182019000200205

Holton, T. A., Vijayakumar, V., & Khaldi, N. (2013). Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a Food-Wiki database. Trends in Food Science and Technology, 34(1). https://doi.org/10.1016/j.tifs.2013.08.009

Hou, Y., Wu, Z., Dai, Z., Wang, G., & Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1). https://doi.org/10.1186/s40104-017-0153-9

Hu, J., Xu, M., Hang, B., Wang, L., Wang, Q., Chen, J., Song, T., Fu, D., Wang, Z., Wang, S., & Liu, X. (2011). Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World Journal of Microbiology and Biotechnology, 27(4). https://doi.org/10.1007/s11274-010-0514-4

Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42(5). https://doi.org/10.1016/j.procbio.2007.02.006

Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, T., & Tanaka, M. (2005). Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chemistry, 93(3). https://doi.org/10.1016/j.foodchem.2004.10.026

Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2005). Isolation and characterization of collagen from bigeye snapper (Priacanthus macracanthus) skin. Journal of the Science of Food and Agriculture, 85(7). https://doi.org/10.1002/jsfa.2072

Jung, E., Kim, J., Kim, M., Jung, D. H., Rhee, H., Shin, J. M., Choi, K., Kang, S. K., Kim, M. K., Yun, C. H., Choi, Y. J., & Choi, S. H. (2007). Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics, 8. https://doi.org/10.1186/1471-2105-8-245

Jung, E. Y., Lee, H. S., Choi, J. W., Ra, K. S., Kim, M. R., & Suh, H. J. (2011). Glucose Tolerance and Antioxidant Activity of Spent Brewer’s Yeast Hydrolysate with a High Content of Cyclo-His-Pro (CHP). Journal of Food Science, 76(2). https://doi.org/10.1111/j.1750-3841.2010.01997.x

Kanauchi, O., Igarashi, K., Ogata, R., Mitsuyama, K., & Andoh, A. (2005). A Yeast Extract High in Bioactive Peptides has a Blood-Pressure Lowering Effect in Hypertensive Model. Current Medicinal Chemistry, 12(26). https://doi.org/10.2174/092986705774933461

Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Science, 93(9). https://doi.org/10.3382/ps.2014-03953

Koh, J., Kim, B. J., Qu, Y., Huang, H., & Dallas, D. C. (2022). Top-Down Glycopeptidomics Reveals Intact Glycomacropeptide Is Digested to a Wide Array of Peptides in Human Jejunum. Journal of Nutrition, 152(2). https://doi.org/10.1093/jn/nxab400

Kotlar, C. E., Ponce, A. G., & Roura, S. I. (2013). Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically. LWT, 50(2). https://doi.org/10.1016/j.lwt.2012.09.005

Lafarga, T., Álvarez, C., & Hayes, M. (2017). Bioactive peptides derived from bovine and porcine co-products: A review. Journal of Food Biochemistry, 41(6). https://doi.org/10.1111/jfbc.12418

Lautenschläger, T., Neinhuis, C., Monizi, M., Mandombe, J. L., Förster, A., Henle, T., & Nuss, M. (2017). Edible insects of Northern Angola. African Invertebrates, 58(2). https://doi.org/10.3897/afrinvertebr.58.21083

Lee, H. A., Kim, I. H., & Nam, T. J. (2015). Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities. International Journal of Molecular Medicine, 36(6). https://doi.org/10.3892/ijmm.2015.2386

Li, B., Chen, F., Wang, X., Ji, B., & Wu, Y. (2007). Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 102(4). https://doi.org/10.1016/j.foodchem.2006.07.002

Li, H., Wu, J., Wan, J., Zhou, Y., & Zhu, Q. (2022). Extraction and identification of bioactive peptides from Panxian dry-cured ham with multifunctional activities. LWT, 160. https://doi.org/10.1016/j.lwt.2022.113326

Li, Z., Zhao, S., Xin, X., Zhang, B., Thomas, A., Charles, A., Lee, K. S., Jin, B. R., & Gui, Z. (2019). Purification and characterization of a novel immunomodulatory hexapeptide from alcalase hydrolysate of ultramicro-pretreated silkworm (Bombyx mori) pupa protein. Journal of Asia-Pacific Entomology, 22(3). https://doi.org/10.1016/j.aspen.2019.04.005

Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1). https://doi.org/10.1016/j.cofs.2014.09.005

Lin, Y. L., Tai, S. Y., Chen, J. W., Chou, C. H., Fu, S. G., & Chen, Y. C. (2017). Ameliorative effects of pepsin-digested chicken liver hydrolysates on development of alcoholic fatty livers in mice. Food and Function, 8(5). https://doi.org/10.1039/c7fo00123a

Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118(2). https://doi.org/10.1016/j.foodchem.2009.05.013

Logarušić, M., Slivac, I., Radošević, K., Bagović, M., Redovniković, I. R., & Srček, V. G. (2019). Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Molecular Biology Reports, 46(6). https://doi.org/10.1007/s11033-019-05043-8

Madadlou, A., & Abbaspourrad, A. (2018). Bioactive whey peptide particles: An emerging class of nutraceutical carriers. Critical Reviews in Food Science and Nutrition, 58(9). https://doi.org/10.1080/10408398.2016.1264064

Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93(2). https://doi.org/10.3168/jds.2009-2566

Manikkam, V., Vasiljevic, T., Donkor, O. N., & Mathai, M. L. (2016). A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides. Critical Reviews in Food Science and Nutrition, 56(1). https://doi.org/10.1080/10408398.2012.753866

Marambe, P. W. M. L. H. K., Shand, P. J., & Wanasundara, J. P. D. (2008). An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) Proteins. JAOCS, Journal of the American Oil Chemists’ Society, 85(12). https://doi.org/10.1007/s11746-008-1293-z

Marson, G. V., Machado, M. T. da C., de Castro, R. J. S., & Hubinger, M. D. (2019). Sequential hydrolysis of spent brewer’s yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry, 84. https://doi.org/10.1016/j.procbio.2019.06.018

Martins, Z. E., Pinho, O., & Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science and Technology, 67. https://doi.org/10.1016/j.tifs.2017.07.003

Megías, C., Pedroche, J., Yust, M. M., Girón-Calle, J., Alaiz, M., Millán, F., & Vioque, J. (2008). Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT, 41(10). https://doi.org/10.1016/j.lwt.2007.11.010

Meshginfar, N., Mahoonak, A. S., Hosseinian, F., & Tsopmo, A. (2019). Physicochemical, antioxidant, calcium binding, and angiotensin converting enzyme inhibitory properties of hydrolyzed tomato seed proteins. Journal of Food Biochemistry, 43(2). https://doi.org/10.1111/jfbc.12721

Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 91(4). https://doi.org/10.1093/jaoac/91.4.965

Mora, L., & Toldrá, F. (2023). Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science, 49. https://doi.org/10.1016/j.cofs.2022.100973

Moughan, P. J., Rutherfurd, S. M., Montoya, C. A., & Dave, L. A. (2014). Food-derived bioactive peptides - A new paradigm. Nutrition Research Reviews, 27(1). https://doi.org/10.1017/S0954422413000206

Moutinho, S., Martínez-Llorens, S., Tomás-Vidal, A., Jover-Cerdá, M., Oliva-Teles, A., & Peres, H. (2017). Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture, 468. https://doi.org/10.1016/j.aquaculture.2016.10.024

MubarakAli, D., Akshaya, T., Sathya, R., & Irfan, N. (2022). Study on the Interaction of Algal Peptides on Virulence Factors of Helicobacter pylori: In Silico Approach. Applied Biochemistry and Biotechnology, 194(1). https://doi.org/10.1007/s12010-021-03716-4

Nasri, M. (2017). Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. Advances in Food and Nutrition Research, 81. https://doi.org/10.1016/bs.afnr.2016.10.003

Nongonierma, A. B., & FitzGerald, R. J. (2017). Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science and Emerging Technologies, 43. https://doi.org/10.1016/j.ifset.2017.08.014

Ofori, J. A., & Hsieh, Y.-H. P. (2011). Blood-derived products for human consumption. Revelation and Science, 1(01).

Olivares-Galván, S., Marina, M. L., & García, M. C. (2022). Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends in Food Science and Technology, 127. https://doi.org/10.1016/j.tifs.2022.06.002

Onuh, J. O., Girgih, A. T., Malomo, S. A., Aluko, R. E., & Aliani, M. (2015). Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. Journal of Functional Foods, 14. https://doi.org/10.1016/j.jff.2015.01.031

Otte, J., Lenhard, T., Flambard, B., & Sørensen, K. I. (2011). Influence of fermentation temperature and autolysis on ACE-inhibitory activity and peptide profiles of milk fermented by selected strains of Lactobacillus helveticus and Lactococcus lactis. International Dairy Journal, 21(4). https://doi.org/10.1016/j.idairyj.2010.12.008

Ovando, C. A., Carvalho, J. C. de, Vinícius de Melo Pereira, G., Jacques, P., Soccol, V. T., & Soccol, C. R. (2018). Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Reviews International, 34(1). https://doi.org/10.1080/87559129.2016.1210632

Papazian, C. (2017). Beer styles: Their origins and classification. Handbook of Brewing, Third Edition. https://doi.org/10.1201/9781351228336

Peng, L., Kong, X., Wang, Z., Ai-lati, A., Ji, Z., & Mao, J. (2021). Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity. Food Chemistry, 339. https://doi.org/10.1016/j.foodchem.2020.128159

Ravallec-Plé, R., Charlot, C., Pires, C., Braga, V., Batista, I., Van Wormhoudt, A., Gal, Y. Le, & Fouchereau-Péron, M. (2001). The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardina pilchardus). Journal of the Science of Food and Agriculture, 81(11). https://doi.org/10.1002/jsfa.921

Rawiwan, P., Peng, Y., Paramayuda, I. G. P. B., & Quek, S. Y. (2022). Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science and Technology, 123. https://doi.org/10.1016/j.tifs.2022.03.003

Rayaprolu, S. J., Hettiarachchy, N. S., Chen, P., Kannan, A., & Mauromostakos, A. (2013). Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Research International, 50(1). https://doi.org/10.1016/j.foodres.2012.10.021

Ribeiro-Oliveira, R., Martins, Z. E., Sousa, J. B., Ferreira, I. M. P. L. V. O., & Diniz, C. (2021). The health-promoting potential of peptides from brewing by-products: An up-to-date review. Trends in Food Science and Technology, 118. https://doi.org/10.1016/j.tifs.2021.09.019

Rivero Pino, F., Pérez Gálvez, R., Espejo Carpio, F. J., & Guadix, E. M. (2020). Evaluation of: Tenebrio molitor protein as a source of peptides for modulating physiological processes. Food and Function, 11(5). https://doi.org/10.1039/d0fo00734j

Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D., & Zambonin, P. G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88(7). https://doi.org/10.3168/jds.S0022-0302(05)72913-1

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1). https://doi.org/10.1186/s40643-017-0187-z

Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishimura, T., & Morimatsu, F. (2008). Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry, 56(20). https://doi.org/10.1021/jf072669w

Sarkar, P., Valacchi, G., & Duary, R. K. (2022). Proteome composition and profiling of bioactive peptides of edible Antheraea assamensis pupae by sequential enzymatic digestion and kinetic modeling of in vitro gastrointestinal digestion. European Food Research and Technology, 248(2). https://doi.org/10.1007/s00217-021-03882-z

Silva, S. V., Pihlanto, A., & Malcata, F. X. (2006). Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. Journal of Dairy Science, 89(9). https://doi.org/10.3168/jds.S0022-0302(06)72370-0

Šližyte, R., Mozuraityte, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T. (2009). Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44(6). https://doi.org/10.1016/j.procbio.2009.02.010

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., … Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728). https://doi.org/10.1038/s41586-018-0594-0

Su, W., Tang, S., Xie, C., Mu, Y., Li, Z., Yang, X., & Qiu, S. (2016). Antioxidant and DNA damage protection activities of duck gizzard peptides by chemiluminescence method. International Journal of Food Properties, 19(4). https://doi.org/10.1080/10942912.2015.1043605

Suttisuwan, R., Phunpruch, S., Saisavoey, T., Sangtanoo, P., Thongchul, N., & Karnchanatat, A. (2019). Free radical scavenging properties and induction of apoptotic effects of fa fraction obtained after proteolysis of bioactive peptides from microalgae synechococcus sp. VDW. Food Technology and Biotechnology, 57(3). https://doi.org/10.17113/ftb.57.03.19.6028

Tao, M., Sun, H., Liu, L., Luo, X., Lin, G., Li, R., & Zhao, Z. (2017). Graphitized porous carbon for rapid screening of angiotensin-converting enzyme inhibitory peptide GAMVVH from silkworm pupa protein and molecular insight into inhibition mechanism. Journal of Agricultural and Food Chemistry, 65(39). https://doi.org/10.1021/acs.jafc.7b03195

Tao, M., Wang, C., Liao, D., Liu, H., Zhao, Z., & Zhao, Z. (2017). Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochemistry, 54. https://doi.org/10.1016/j.procbio.2016.12.022

Tavares, T., & Malcata, F. (2013). Whey proteins as source of bioactive peptides against hypertension. Bioactive food peptides in health and disease.

Thiago, R. dos S. M., Pedro, P. M. de M., & Eliana, F. C. S. (2014). Solid wastes in brewing process: A review. Journal of Brewing and Distilling, 5(1). https://doi.org/10.5897/jbd2014.0043

Toldrá, F., Gallego, M., Reig, M., Aristoy, M. C., & Mora, L. (2020). Bioactive peptides generated in the processing of dry-cured ham. Food Chemistry, 321. https://doi.org/10.1016/j.foodchem.2020.126689

Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science and Technology, 36(2). https://doi.org/10.1016/j.tifs.2014.02.004

Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1). https://doi.org/10.1111/j.1750-3841.2011.02455.x

Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108. https://doi.org/10.1016/j.tifs.2020.12.002

Veldkamp, T., & Bosch, G. (2015). Insects: A protein-rich feed ingredient in pig and poultry diets. Animal Frontiers, 5(2). https://doi.org/10.2527/af.2015-0019

Vercruysse, L., Smagghe, G., Herregods, G., & Van Camp, J. (2005). ACE inhibitory activity in enzymatic hydrolysates of insect protein. Journal of Agricultural and Food Chemistry, 53(13). https://doi.org/10.1021/jf050337q

Verni, M., Pontonio, E., Krona, A., Jacob, S., Pinto, D., Rinaldi, F., Verardo, V., Díaz-de-Cerio, E., Coda, R., & Rizzello, C. G. (2020). Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01831

Vieira, E. F., Melo, A., & Ferreira, I. M. P. L. V. O. (2017). Autolysis of intracellular content of Brewer’s spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT, 82. https://doi.org/10.1016/j.lwt.2017.04.046

Walzem, R. L., Dillard, C. J., & German, J. B. (2002). Whey components: Millennia of evolution create functionalities for mammalian nutrition: What we know and what we may be overlooking. Critical Reviews in Food Science and Nutrition, 42(4). https://doi.org/10.1080/10408690290825574

Wang, S., Zhao, M., Fan, H., & Wu, J. (2022). Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Current Opinion in Food Science, 48. https://doi.org/10.1016/j.cofs.2022.100914

Wang, X., Chen, H., Fu, X., Li, S., & Wei, J. (2017). A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT, 75. https://doi.org/10.1016/j.lwt.2016.08.047

Wen, C., Zhang, J., Feng, Y., Duan, Y., Ma, H., & Zhang, H. (2020). Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress. Food Chemistry, 327. https://doi.org/10.1016/j.foodchem.2020.127059

Xu, D., Li, D., Zhao, Z., Wu, J., & Zhao, M. (2019). Regulation by walnut protein hydrolysate on the components and structural degradation of photoaged skin in SD rats. Food and Function, 10(10). https://doi.org/10.1039/c8fo01833b

Xu, F., Zhang, J., Wang, Z., Yao, Y., Atungulu, G. G., Ju, X., & Wang, L. (2018). Absorption and Metabolism of Peptide WDHHAPQLR Derived from Rapeseed Protein and Inhibition of HUVEC Apoptosis under Oxidative Stress. Journal of Agricultural and Food Chemistry, 66(20). https://doi.org/10.1021/acs.jafc.8b01620

Xu, Z., Mao, T. M., Huang, L., Yu, Z. C., Yin, B., Chen, M. L., & Cheng, Y. H. (2019). Purification and identification immunomodulatory peptide from rice protein hydrolysates. Food and Agricultural Immunology, 30(1). https://doi.org/10.1080/09540105.2018.1553938

Yu, Y., Hu, J., Miyaguchi, Y., Bai, X., Du, Y., & Lin, B. (2006). Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides, 27(11). https://doi.org/10.1016/j.peptides.2006.05.025

Zanoni, C., Aiello, G., Arnoldi, A., & Lammi, C. (2017). Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism. Journal of Agricultural and Food Chemistry, 65(40). https://doi.org/10.1021/acs.jafc.7b02742

Zhang, Y., Jiang, W., Hao, X., Tan, J., Wang, W., Yu, M., Zhang, G., & Zhang, Y. (2021). Preparation of the Enzymatic Hydrolysates from Chlorella vulgaris Protein and Assessment of Their Antioxidant Potential Using Caenorhabditis elegans. Molecular Biotechnology, 63(11). https://doi.org/10.1007/s12033-021-00361-4

Zhang, Y., Wang, J., Zhu, Z., Li, X., Sun, S., Wang, W., & Sadiq, F. A. (2021). Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates. European Food Research and Technology, 247(2). https://doi.org/10.1007/s00217-020-03626-5

Zheng, J., Wang, J., Pan, H., Wu, H., Ren, D., & Lu, J. (2017). Effects of IQP, VEP and Spirulina platensis hydrolysates on the local kidney renin angiotensin system in spontaneously hypertensive rats. Molecular Medicine Reports, 16(6). https://doi.org/10.3892/mmr.2017.7602

Zou, Y., Shahidi, F., Shi, H., Wang, J., Huang, Y., Xu, W., & Wang, D. (2021). Values-added utilization of protein and hydrolysates from animal processing by-product livers: A review. Trends in Food Science and Technology, 110. https://doi.org/10.1016/j.tifs.2021.02.033

Zou, Z., Wang, M., Wang, Z., Aluko, R. E., & He, R. (2020). Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. Journal of Food Biochemistry, 44(1). https://doi.org/10.1111/jfbc.13090

Zu, X. Y., Zhao, Y. J., Fu, S. M., Liao, T., Li, H. L., & Xiong, G. Q. (2022). Physicochemical Properties and Biological Activities of Silver Carp Scale Peptide and Its Nanofiltration Fractions. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.812443

Downloads

Published

23.05.2024

How to Cite

Oraç, A. (2024). Sustainable Sources of Bioactive Peptides: Food Processing By-products and Wastes. Turkish Journal of Agriculture - Food Science and Technology, 12(5), 855–866. https://doi.org/10.24925/turjaf.v12i5.855-866.6401

Issue

Section

Review Articles