Sustainable Sources of Bioactive Peptides: Food Processing By-products and Wastes




Bioactive peptid, by-product, food waste, health, sustainable


Food waste and by-products are protein-rich sources and represent an important alternative in the search for new strategies to produce compounds with bioactivity from protein hydrolysates. Several studies have shown that by-products and wastes from food processing industries can be utilised as potential sources of bioactive compounds that have an important application in the treatment of various disorders. Bioactive peptides, defined as small fractions of a certain number of amino acids encrypted in proteins, have high potential as a safe, natural, and cost-effective alternative to synthetic drugs to prevent or treat these diseases. By-products and wastes represent a relatively inexpensive source, so their utilisation for the production of bioactive peptides not only leads to a reduction in production costs but is also very important for the development of high value-added nutritional by-products. This practice also contributes to reduce the problem of waste disposal. In this context, the aim of this study was to review the current studies on various food processing by-products and wastes that can be used in the production of bioactive peptides, the processes of obtaining protein hydrolysate from these products and the health benefits of these peptides.


Adje, E. Y., Balti, R., Kouach, M., Dhulster, P., Guillochon, D., & Nedjar-Arroume, N. (2011). Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. International Journal of Biological Macromolecules, 49(2).

Adje, E. Y., Balti, R., Kouach, M., Guillochon, D., & Nedjar-Arroume, N. (2011). α 67-106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. European Food Research and Technology, 232(4).

Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98.

Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15).

Alemán, A., Gómez-Guillén, M. C., & Montero, P. (2013). Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Research International, 54(1).

Aluko, R. E., Girgih, A. T., He, R., Malomo, S., Li, H., Offengenden, M., & Wu, J. (2015). Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International, 77.

Amorim, M. M., Pereira, J. O., Monteiro, K. M., Ruiz, A. L., Carvalho, J. E., Pinheiro, H., & Pintado, M. (2016). Antiulcer and antiproliferative properties of spent brewer’s yeast peptide extracts for incorporation into foods. Food and Function, 7(5).

Banerjee, P., & Shanthi, C. (2012). Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochemistry, 47(12).

Barberis, S. E., Origone, A. L., Adaro, M. O., & Bersi, G. (2018). Bioactive Peptides as Functional Food Ingredients. Role of Materials Science in Food Bioengineering.

Batish, I., Brits, D., Valencia, P., Miyai, C., Rafeeq, S., Xu, Y., Galanopoulos, M., Sismour, E., & Ovissipour, R. (2020). Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects, 11(12).

Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3).

Boer, R. De. (2014). From milk by-products to milk ingredients: upgrading the cycle. John Wiley & Sons.

Bravo, F. I., Mas-Capdevila, A., Margalef, M., Arola-Arnal, A., & Muguerza, B. (2019). Novel Antihypertensive Peptides Derived from Chicken Foot Proteins. Molecular Nutrition and Food Research, 63(12).

Catiau, L., Traisnel, J., Chihib, N. E., Le Flem, G., Blanpain, A., Melnyk, O., Guillochon, D., & Nedjar-Arroume, N. (2011). RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides, 32(7).

Catiau, L., Traisnel, J., Delval-Dubois, V., Chihib, N. E., Guillochon, D., & Nedjar-Arroume, N. (2011). Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides, 32(4).

Cermeño, M., Connolly, A., O’Keeffe, M. B., Flynn, C., Alashi, A. M., Aluko, R. E., & FitzGerald, R. J. (2019). Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods, 60.

Cermeño, M., Kleekayai, T., Amigo-Benavent, M., Harnedy-Rothwell, P., & FitzGerald, R. J. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41(20).

Chai, T. T., Xiao, J., Mohana Dass, S., Teoh, J. Y., Ee, K. Y., Ng, W. J., & Wong, F. C. (2021). Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chemistry, 340.

Chakrabarti, S., Guha, S., & Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11).

Chang, C. Y., Wu, K. C., & Chiang, S. H. (2007). Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry, 100(4).

Chen, P. J., Tseng, J. K., Lin, Y. L., Wu, Y. H. S., Hsiao, Y. T., Chen, J. W., & Chen, Y. C. (2017). Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Antifibrosis. Journal of Agricultural and Food Chemistry, 65(24).

Cho, H. R., & Lee, S. O. (2020). Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Research International, 133.

Chou, C. H., Wang, S. Y., Lin, Y. T., & Chen, Y. C. (2014). Antioxidant activities of chicken liver hydrolysates by pepsin treatment. International Journal of Food Science and Technology, 49(7).

Cian, R. E., Garzón, A. G., Martínez-Augustin, O., Botto, C. C., & Drago, S. R. (2018). Antithrombotic Activity of Brewers’ Spent Grain Peptides and their Effects on Blood Coagulation Pathways. Plant Foods for Human Nutrition, 73(3).

Collinder, E., Nyberg, F., Sanderson-Nydahl, K., Gottlieb-Vedi, M., & Lindholm, A. (2005). The opioid haemorphin-7 in horses during low-speed and high-speed treadmill exercise to fatigue. Journal of Veterinary Medicine Series A: Physiology Pathology Clinical Medicine, 52(4).

Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2014). In vitro α-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers’ spent grain protein hydrolysates. Food Research International, 56.

Daroit, D. J., & Brandelli, A. (2021). In vivo bioactivities of food protein-derived peptides – a current review. Current Opinion in Food Science, 39.

Edgar Zapata Montoya, J., & Franco Sanchez, A. (2022). The Hydrolysates from Fish By-Product, An Opportunity Increasing.

Ennaas, N., Hammami, R., Beaulieu, L., & Fliss, I. (2015). Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochemical and Biophysical Research Communications, 462(3).

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M. C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2-3).

Esfandi, R., Willmore, W. G., & Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279.

Fan, X., Bai, L., Mao, X., & Zhang, X. (2017). Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochemistry, 60.

Finoulst, I., Pinkse, M., Van Dongen, W., & Verhaert, P. (2011). Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. Journal of Biomedicine and Biotechnology, 2011.

Fu, Z., & Lin, J. (2017). An overview of bioinformatics tools and resources in allergy. Methods in Molecular Biology, 1592.

Fukami, H. (2010). Functional foods and biotechnology in Japan. Biotechnology in Functional Foods and Nutraceuticals.

Gobbetti, M., Minervini, F., & Rizzello, C. G. (2004). Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology, 57(2-3).

Gomez-Guillen, M. C., Gimenez, B., Lopez-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8).

Görgüç, A. & Yılmaz, F. M. (2019). Investigating the recovery potential of protein and antioxidant compounds from sesame bran using selected basic component analyses. Turkish Journal of Agriculture‐Food Science and Technology, 7(4), 624-630.

Görgüç, A., Bircan, C., & Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283.

Görgüç, A., Gençdağ, E., & Yılmaz, F. M. (2020). Recovery of Bioactive Peptides from Food Wastes and Their Bioavailability Properties. Turkish Journal of Agriculture - Food Science and Technology, 8(4).

Görgüç, A., Özer, P., & Yılmaz, F. M. (2020). Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. Journal of Food Processing and Preservation, 44(1).

Hall, F., Johnson, P. E., & Liceaga, A. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chemistry, 262.

Han, R., Hernández Álvarez, A. J., Maycock, J., Murray, B. S., & Boesch, C. (2021). Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates – Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4.

Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2), 163-169.

He, X. Q., Cao, W. H., Pan, G. K., Yang, L., & Zhang, C. H. (2015). Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. Journal of the Science of Food and Agriculture, 95(7).

Heffernan, S., Giblin, L., & O’Brien, N. (2021). Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chemistry, 359.

Hernández-Ledesma, B., Dávalos, A., Bartolomé, B., & Amigo, L. (2005). Preparation of Antioxidant Enzymatic Hydrolysates from α-Lactalbumin and β-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 53(3), 588-593.

Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. Small Ruminant Research, 101(1-3).

Herrera-Ponce, A. L., Alarcón-Rojo, A. D., Salmeron, I., & Rodríguez-Figueroa, J. C. (2019). Physiological health effects of whey protein-derived bioactive peptides: A review. Revista Chilena de Nutricion, 46(2).

Holton, T. A., Vijayakumar, V., & Khaldi, N. (2013). Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a Food-Wiki database. Trends in Food Science and Technology, 34(1).

Hou, Y., Wu, Z., Dai, Z., Wang, G., & Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1).

Hu, J., Xu, M., Hang, B., Wang, L., Wang, Q., Chen, J., Song, T., Fu, D., Wang, Z., Wang, S., & Liu, X. (2011). Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World Journal of Microbiology and Biotechnology, 27(4).

Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42(5).

Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, T., & Tanaka, M. (2005). Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chemistry, 93(3).

Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2005). Isolation and characterization of collagen from bigeye snapper (Priacanthus macracanthus) skin. Journal of the Science of Food and Agriculture, 85(7).

Jung, E., Kim, J., Kim, M., Jung, D. H., Rhee, H., Shin, J. M., Choi, K., Kang, S. K., Kim, M. K., Yun, C. H., Choi, Y. J., & Choi, S. H. (2007). Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics, 8.

Jung, E. Y., Lee, H. S., Choi, J. W., Ra, K. S., Kim, M. R., & Suh, H. J. (2011). Glucose Tolerance and Antioxidant Activity of Spent Brewer’s Yeast Hydrolysate with a High Content of Cyclo-His-Pro (CHP). Journal of Food Science, 76(2).

Kanauchi, O., Igarashi, K., Ogata, R., Mitsuyama, K., & Andoh, A. (2005). A Yeast Extract High in Bioactive Peptides has a Blood-Pressure Lowering Effect in Hypertensive Model. Current Medicinal Chemistry, 12(26).

Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Science, 93(9).

Koh, J., Kim, B. J., Qu, Y., Huang, H., & Dallas, D. C. (2022). Top-Down Glycopeptidomics Reveals Intact Glycomacropeptide Is Digested to a Wide Array of Peptides in Human Jejunum. Journal of Nutrition, 152(2).

Kotlar, C. E., Ponce, A. G., & Roura, S. I. (2013). Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically. LWT, 50(2).

Lafarga, T., Álvarez, C., & Hayes, M. (2017). Bioactive peptides derived from bovine and porcine co-products: A review. Journal of Food Biochemistry, 41(6).

Lautenschläger, T., Neinhuis, C., Monizi, M., Mandombe, J. L., Förster, A., Henle, T., & Nuss, M. (2017). Edible insects of Northern Angola. African Invertebrates, 58(2).

Lee, H. A., Kim, I. H., & Nam, T. J. (2015). Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities. International Journal of Molecular Medicine, 36(6).

Li, B., Chen, F., Wang, X., Ji, B., & Wu, Y. (2007). Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 102(4).

Li, H., Wu, J., Wan, J., Zhou, Y., & Zhu, Q. (2022). Extraction and identification of bioactive peptides from Panxian dry-cured ham with multifunctional activities. LWT, 160.

Li, Z., Zhao, S., Xin, X., Zhang, B., Thomas, A., Charles, A., Lee, K. S., Jin, B. R., & Gui, Z. (2019). Purification and characterization of a novel immunomodulatory hexapeptide from alcalase hydrolysate of ultramicro-pretreated silkworm (Bombyx mori) pupa protein. Journal of Asia-Pacific Entomology, 22(3).

Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1).

Lin, Y. L., Tai, S. Y., Chen, J. W., Chou, C. H., Fu, S. G., & Chen, Y. C. (2017). Ameliorative effects of pepsin-digested chicken liver hydrolysates on development of alcoholic fatty livers in mice. Food and Function, 8(5).

Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118(2).

Logarušić, M., Slivac, I., Radošević, K., Bagović, M., Redovniković, I. R., & Srček, V. G. (2019). Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Molecular Biology Reports, 46(6).

Madadlou, A., & Abbaspourrad, A. (2018). Bioactive whey peptide particles: An emerging class of nutraceutical carriers. Critical Reviews in Food Science and Nutrition, 58(9).

Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93(2).

Manikkam, V., Vasiljevic, T., Donkor, O. N., & Mathai, M. L. (2016). A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides. Critical Reviews in Food Science and Nutrition, 56(1).

Marambe, P. W. M. L. H. K., Shand, P. J., & Wanasundara, J. P. D. (2008). An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) Proteins. JAOCS, Journal of the American Oil Chemists’ Society, 85(12).

Marson, G. V., Machado, M. T. da C., de Castro, R. J. S., & Hubinger, M. D. (2019). Sequential hydrolysis of spent brewer’s yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry, 84.

Martins, Z. E., Pinho, O., & Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science and Technology, 67.

Megías, C., Pedroche, J., Yust, M. M., Girón-Calle, J., Alaiz, M., Millán, F., & Vioque, J. (2008). Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT, 41(10).

Meshginfar, N., Mahoonak, A. S., Hosseinian, F., & Tsopmo, A. (2019). Physicochemical, antioxidant, calcium binding, and angiotensin converting enzyme inhibitory properties of hydrolyzed tomato seed proteins. Journal of Food Biochemistry, 43(2).

Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 91(4).

Mora, L., & Toldrá, F. (2023). Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science, 49.

Moughan, P. J., Rutherfurd, S. M., Montoya, C. A., & Dave, L. A. (2014). Food-derived bioactive peptides - A new paradigm. Nutrition Research Reviews, 27(1).

Moutinho, S., Martínez-Llorens, S., Tomás-Vidal, A., Jover-Cerdá, M., Oliva-Teles, A., & Peres, H. (2017). Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture, 468.

MubarakAli, D., Akshaya, T., Sathya, R., & Irfan, N. (2022). Study on the Interaction of Algal Peptides on Virulence Factors of Helicobacter pylori: In Silico Approach. Applied Biochemistry and Biotechnology, 194(1).

Nasri, M. (2017). Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. Advances in Food and Nutrition Research, 81.

Nongonierma, A. B., & FitzGerald, R. J. (2017). Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science and Emerging Technologies, 43.

Ofori, J. A., & Hsieh, Y.-H. P. (2011). Blood-derived products for human consumption. Revelation and Science, 1(01).

Olivares-Galván, S., Marina, M. L., & García, M. C. (2022). Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends in Food Science and Technology, 127.

Onuh, J. O., Girgih, A. T., Malomo, S. A., Aluko, R. E., & Aliani, M. (2015). Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. Journal of Functional Foods, 14.

Otte, J., Lenhard, T., Flambard, B., & Sørensen, K. I. (2011). Influence of fermentation temperature and autolysis on ACE-inhibitory activity and peptide profiles of milk fermented by selected strains of Lactobacillus helveticus and Lactococcus lactis. International Dairy Journal, 21(4).

Ovando, C. A., Carvalho, J. C. de, Vinícius de Melo Pereira, G., Jacques, P., Soccol, V. T., & Soccol, C. R. (2018). Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Reviews International, 34(1).

Papazian, C. (2017). Beer styles: Their origins and classification. Handbook of Brewing, Third Edition.

Peng, L., Kong, X., Wang, Z., Ai-lati, A., Ji, Z., & Mao, J. (2021). Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity. Food Chemistry, 339.

Ravallec-Plé, R., Charlot, C., Pires, C., Braga, V., Batista, I., Van Wormhoudt, A., Gal, Y. Le, & Fouchereau-Péron, M. (2001). The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardina pilchardus). Journal of the Science of Food and Agriculture, 81(11).

Rawiwan, P., Peng, Y., Paramayuda, I. G. P. B., & Quek, S. Y. (2022). Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science and Technology, 123.

Rayaprolu, S. J., Hettiarachchy, N. S., Chen, P., Kannan, A., & Mauromostakos, A. (2013). Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Research International, 50(1).

Ribeiro-Oliveira, R., Martins, Z. E., Sousa, J. B., Ferreira, I. M. P. L. V. O., & Diniz, C. (2021). The health-promoting potential of peptides from brewing by-products: An up-to-date review. Trends in Food Science and Technology, 118.

Rivero Pino, F., Pérez Gálvez, R., Espejo Carpio, F. J., & Guadix, E. M. (2020). Evaluation of: Tenebrio molitor protein as a source of peptides for modulating physiological processes. Food and Function, 11(5).

Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D., & Zambonin, P. G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88(7).

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1).

Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishimura, T., & Morimatsu, F. (2008). Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry, 56(20).

Sarkar, P., Valacchi, G., & Duary, R. K. (2022). Proteome composition and profiling of bioactive peptides of edible Antheraea assamensis pupae by sequential enzymatic digestion and kinetic modeling of in vitro gastrointestinal digestion. European Food Research and Technology, 248(2).

Silva, S. V., Pihlanto, A., & Malcata, F. X. (2006). Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. Journal of Dairy Science, 89(9).

Šližyte, R., Mozuraityte, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T. (2009). Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44(6).

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., … Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728).

Su, W., Tang, S., Xie, C., Mu, Y., Li, Z., Yang, X., & Qiu, S. (2016). Antioxidant and DNA damage protection activities of duck gizzard peptides by chemiluminescence method. International Journal of Food Properties, 19(4).

Suttisuwan, R., Phunpruch, S., Saisavoey, T., Sangtanoo, P., Thongchul, N., & Karnchanatat, A. (2019). Free radical scavenging properties and induction of apoptotic effects of fa fraction obtained after proteolysis of bioactive peptides from microalgae synechococcus sp. VDW. Food Technology and Biotechnology, 57(3).

Tao, M., Sun, H., Liu, L., Luo, X., Lin, G., Li, R., & Zhao, Z. (2017). Graphitized porous carbon for rapid screening of angiotensin-converting enzyme inhibitory peptide GAMVVH from silkworm pupa protein and molecular insight into inhibition mechanism. Journal of Agricultural and Food Chemistry, 65(39).

Tao, M., Wang, C., Liao, D., Liu, H., Zhao, Z., & Zhao, Z. (2017). Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochemistry, 54.

Tavares, T., & Malcata, F. (2013). Whey proteins as source of bioactive peptides against hypertension. Bioactive food peptides in health and disease.

Thiago, R. dos S. M., Pedro, P. M. de M., & Eliana, F. C. S. (2014). Solid wastes in brewing process: A review. Journal of Brewing and Distilling, 5(1).

Toldrá, F., Gallego, M., Reig, M., Aristoy, M. C., & Mora, L. (2020). Bioactive peptides generated in the processing of dry-cured ham. Food Chemistry, 321.

Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science and Technology, 36(2).

Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1).

Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108.

Veldkamp, T., & Bosch, G. (2015). Insects: A protein-rich feed ingredient in pig and poultry diets. Animal Frontiers, 5(2).

Vercruysse, L., Smagghe, G., Herregods, G., & Van Camp, J. (2005). ACE inhibitory activity in enzymatic hydrolysates of insect protein. Journal of Agricultural and Food Chemistry, 53(13).

Verni, M., Pontonio, E., Krona, A., Jacob, S., Pinto, D., Rinaldi, F., Verardo, V., Díaz-de-Cerio, E., Coda, R., & Rizzello, C. G. (2020). Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Frontiers in Microbiology, 11.

Vieira, E. F., Melo, A., & Ferreira, I. M. P. L. V. O. (2017). Autolysis of intracellular content of Brewer’s spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT, 82.

Walzem, R. L., Dillard, C. J., & German, J. B. (2002). Whey components: Millennia of evolution create functionalities for mammalian nutrition: What we know and what we may be overlooking. Critical Reviews in Food Science and Nutrition, 42(4).

Wang, S., Zhao, M., Fan, H., & Wu, J. (2022). Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Current Opinion in Food Science, 48.

Wang, X., Chen, H., Fu, X., Li, S., & Wei, J. (2017). A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT, 75.

Wen, C., Zhang, J., Feng, Y., Duan, Y., Ma, H., & Zhang, H. (2020). Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress. Food Chemistry, 327.

Xu, D., Li, D., Zhao, Z., Wu, J., & Zhao, M. (2019). Regulation by walnut protein hydrolysate on the components and structural degradation of photoaged skin in SD rats. Food and Function, 10(10).

Xu, F., Zhang, J., Wang, Z., Yao, Y., Atungulu, G. G., Ju, X., & Wang, L. (2018). Absorption and Metabolism of Peptide WDHHAPQLR Derived from Rapeseed Protein and Inhibition of HUVEC Apoptosis under Oxidative Stress. Journal of Agricultural and Food Chemistry, 66(20).

Xu, Z., Mao, T. M., Huang, L., Yu, Z. C., Yin, B., Chen, M. L., & Cheng, Y. H. (2019). Purification and identification immunomodulatory peptide from rice protein hydrolysates. Food and Agricultural Immunology, 30(1).

Yu, Y., Hu, J., Miyaguchi, Y., Bai, X., Du, Y., & Lin, B. (2006). Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides, 27(11).

Zanoni, C., Aiello, G., Arnoldi, A., & Lammi, C. (2017). Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism. Journal of Agricultural and Food Chemistry, 65(40).

Zhang, Y., Jiang, W., Hao, X., Tan, J., Wang, W., Yu, M., Zhang, G., & Zhang, Y. (2021). Preparation of the Enzymatic Hydrolysates from Chlorella vulgaris Protein and Assessment of Their Antioxidant Potential Using Caenorhabditis elegans. Molecular Biotechnology, 63(11).

Zhang, Y., Wang, J., Zhu, Z., Li, X., Sun, S., Wang, W., & Sadiq, F. A. (2021). Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates. European Food Research and Technology, 247(2).

Zheng, J., Wang, J., Pan, H., Wu, H., Ren, D., & Lu, J. (2017). Effects of IQP, VEP and Spirulina platensis hydrolysates on the local kidney renin angiotensin system in spontaneously hypertensive rats. Molecular Medicine Reports, 16(6).

Zou, Y., Shahidi, F., Shi, H., Wang, J., Huang, Y., Xu, W., & Wang, D. (2021). Values-added utilization of protein and hydrolysates from animal processing by-product livers: A review. Trends in Food Science and Technology, 110.

Zou, Z., Wang, M., Wang, Z., Aluko, R. E., & He, R. (2020). Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. Journal of Food Biochemistry, 44(1).

Zu, X. Y., Zhao, Y. J., Fu, S. M., Liao, T., Li, H. L., & Xiong, G. Q. (2022). Physicochemical Properties and Biological Activities of Silver Carp Scale Peptide and Its Nanofiltration Fractions. Frontiers in Nutrition, 8.




How to Cite

Oraç, A. (2024). Sustainable Sources of Bioactive Peptides: Food Processing By-products and Wastes. Turkish Journal of Agriculture - Food Science and Technology, 12(5), 855–866.



Review Articles