Effects of Chitosan and its Organic Acid Solutions on Corn Silage Quality
DOI:
https://doi.org/10.24925/turjaf.v12i5.739-746.6423Keywords:
Chitosan, Lactic acid, Acetic acid, Silage qualityAbstract
Sometimes the use of additives is important to maintain silage group feeds at certain quality standards. Within the scope of this study, it was aimed to investigate the potential of using chitosan and its gelatinized solutions prepared with acetic and lactic acid, which have non-toxic, antimicrobial, antifungal and biodegradable properties, as additives in corn silage. Chitosan and its organic acid solutions were applied to corn silage in two different ways. Chitosan was mixed into the silaged samples at the rates of 0.5%, 1.0% and 2.0%. Additionally, gelatinized solutions prepared by adding 0.0%, 1.0% and 2.0% chitosan in 2% acetic and lactic acid solutions were sprayed on 10% corn silage. In chitosan groups, crude protein (CP), total digestible nutrients (TDN) and energy values (ME, NEL, NEM, NEG) were found to be higher than the other groups. CP values of NDF and ADF-insoluble residues (NDICP, ADICP) were found to be higher in the 2.0% chitosan group. Relative feed value (RFV) was found to be high in chitosan groups. Nutrients varied among all groups, but the correlation of variations between groups was not consistent. Ammonia nitrogen (NH3-N) was highest in the 2.0% chitosan group. Butyric acid was detected only in groups with chitosan. The amount of lactic, acetic and propionic acid differed between the groups, but it was determined that these differences were not in proportion to the additive application rates. Mold was detected only in the control group and was not seen in the treatment groups. Enterobacteriaceae group microorganisms were not detected in the treatment groups. Yeast was mostly seen in groups containing chitosan. As a result, although chitosan and chitosan solutions caused positive changes in some parameters, they did not generally provide the desired level of improvement in terms of fermentative and microbiological quality.
References
Altuğ, T., Ova, G., Demirağ, K., Elmacı, Y., Zorba, M., Bahar, B., Gür, E., & Uysal, V. (2009). Gıda Katkı Maddeleri. Sidas, İzmir.
AOAC. (2022). Amylase-treated neutral detergent fiber in feeds 2002-4. AOAC Off. Method, 48–55.
AOAC. (2006). Protein (crude) in animal feed, combustion method 990.03. AOAC Off. Method, 30–31.
AOAC. (2005). Ash of animal feed, in official methods of analysis of AOAC international 942.05. AOAC Off. Method 8.
AOAC. (1997). Fiber (Acid Detergent) and lignin in animal feed 973.18. AOAC Off. Method, 28–29.
AOCS. (2004). Rapid determination of oil / fat utilizing high temperature solvent extraction. American Oil Chemists' Society, 1–3.
Araújo, A. P. C., Venturelli, B. C., Santos, M. C. B., Gardinal, R., Cônsolo, N. R. B., Calomeni, G. D., Freitas, J. E., Barletta, R. V., Gandra, J., Paiva, P.G., & Rennó, F. P. (2015). Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Animal Feed Science and Technology, 206, 114–118. https://doi.org/10.1016/j.anifeedsci.2015.05.016
Bryan, K. A. (2019). Clean alfalfa haylage. Progressive Forage, March, 2019. https://www.agproud.com/articles/31936-clean-alfalfa-haylage
Canbolat, Ö. (2019). Yem Analiz Yöntemleri ve Yem Değerlendirme. Medyay, Bursa.
Casquete, R., Castro, S. M., & Teixeira, P. (2017). Evaluation of the Combined Effect of Chitosan and Lactic Acid Bacteria in Alheira (Fermented Meat Sausage) Paste. Journal of Food Processing and Preservation, 41, 1–8. https://doi.org/10.1111/jfpp.12866
Coblentz, W.K., Hoffman, P.C., & Martin, N. P. (2010). Effects of spontaneous heating on forage protein fractions and in situ disappearance kinetics of crude protein for alfalfa-orchardgrass hays packaged in large round bales. Journal of Dairy Science, 93, 1148–1169. https://doi.org/10.3168/jds.2009-2701
Daniel, J. L. P., Bernardes, T. F., Jobim, C. C., Schmidt, P., & Nussio, L. G. (2019). Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science, 74, 188–200. https://doi.org/10.1111/gfs.12417
De Morais, J. P. G., Cantoia Júnior, R., Garcia, T. M., Capucho, E., Campana, M., Gandra, J.R., Ghizzi, L. G., & Del Valle, T. A. (2021). Chitosan and microbial inoculants in whole-plant soybean silage. The Journal of Agriculture Science, 159, 227–235. https://doi.org/10.1017/S0021859621000447
Del Valle, T. A., Zenatti. T. F., Antonio, G., Campana, M., Gandra, J. R., Zilio, E. M. C., de Mattos, L. F. A., & de Morais, J. G. P. (2018). Effect of chitosan on the preservation quality of sugarcane silage. Grass and Forage Science, 73, 630–638. https://doi.org/10.1111/gfs.12356
Fadel El-Seed, A. N. M. A., Kamel, H. E. M., Sekine, J., Hishinuma, M., & Hamana, K. (2003). Chitin and chitosan as possible novel nitrogen sources for ruminants. Canadian Journal of Animal Science, 83, 161–163. https://doi.org/10.4141/A02-063
Gandra, J. R., Oliveira, E. R., Takiya, C. S., Goes, R. H. T. B., Paiva, P. G., Oliveira, K. M. P., Gandra, E. R. S., Orbach, N. D., & Haraki, H. M. C. (2016). Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Animal Feed Science and Technology, 214, 44–52. https://doi.org/10.1016/j.anifeedsci.2016.02.020
Gandra, J. R., Takiya, C. S., Del Valle, T.A., Oliveira, E. R., de Goes, R. H. T. B., Gandra, E. R. S., Batista, J. D. O., & Araki, H. M. C. (2018). Soybean whole-plant ensiled with chitosan and lactic acid bacteria: Microorganism counts, fermentative profile, and total losses. Journal of Dairy Science, 101, 7871–7880. https://doi.org/10.3168/jds.2017-14268
Garon, D., Richard, E., Sage, L., Bouchart, V., Pottier, D., & Lebailly, P. (2006). Mycoflora and multimycotoxin detection in corn silage: Experimental study. Journal of Agricultural and Food Chemistry, 54, 3479–3484. https://doi.org/10.1021/jf060179i
Goiri, I., Oregui, L. M., & Garcia-Rodriguez, A. (2010). Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. Journal of Animal Science, 88, 749–755. https://doi.org/10.2527/jas.2009-2377
Gomes De Paiva, P., Ferreira De Jesus, E., Del Valle, T. A., Ferreira De Almeida, G., Costa, A. G. B. V. B., Consentini, C. E. C., Zanferari, F., Takiya, C. S., Bueno, I. C. D. S., & Rennó, F. P. (2017). Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Animal Production Science, 57, 301–307. https://doi.org/10.1071/AN15329
Goy, R. C., De Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polimeros, 19, 241–247. https://doi.org/10.1590/S0104-14282009000300013
Harahap, R. P., Rohayeti, Y., Setiawan, D., Heraini, D., Sadarman, Nahrowi, Suharti, S., Jayanegara, A., & Adli, D. N. 2023. Effect of chitosan as an alternative additive on preservation quality of silage: A meta-analysis. Developing Modern Livestock Production in Tropical Countries, 29–33. https://doi.org/10.1201/9781003370048-8
Henry, D. D., Ciriaco, F. M., & Kohmann, M. (2015). Effects of chitosan on nutrient digestibility, CH4 emissions, and in vitro. Journal of Animal Science, 93, 3539–3550. https://doi.org/10.2527/jas2014-8844
Hirano, S. (1996). Chitin Biotechnology Applications. Biotechnology Annual Review, 2, 237–258. https://doi.org/10.1016/S1387-2656(08)70012-7
Kaplan, M., Baran, O., Unlukara, A., Kale, H., Arslan, M., Kara, K., Beyzi, S. B., Konca, Y., & Ulas, A. (2016). The effects of different nitrogen doses and irrigation levels on yield, Nutritive value, Fermentation and gas production of corn silage. Turkish Journal of Field Crops, 21, 101–109. https://doi.org/10.17557/tjfc.82794
Kızılşimşek, M., Erol, A., Dönmez, R., & Katrancı, B. (2016). Silaj Mikro Florasının Birbirleri İle İlişkileri, Silaj Fermentasyonu ve Kalitesi Üzerine Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19, 136. https://doi.org/10.18016/ksujns.35488
Kung, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101, 4020–4033. https://doi.org/10.3168/jds.2017-13909
Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., & Plascencia-Jatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305–315. https://doi.org/10.1016/j.carbpol.2010.04.069
Muck, R. E. (2010). Silage microbiology and its control through additives. Revista Brasileira de Zootecnia, 39, 183–191. https://doi.org/10.1590/s1516-35982010001300021
Mujtaba, M., Ali, Q., Yilmaz, B. A., Seckin Kurubas, M., Ustun, H., Erkan, M., Kaya, M., Cicek, M., & Oner, E. T. (2023). Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chemistry, 416, 135816. https://doi.org/10.1016/j.foodchem.2023.135816
Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules, 121, 889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109
NRC. (2001). Nutrient Requirements of Dairy Cattle, Seventh Re. ed. National Academy Press, Washington, DC.
Sırakaya, S., & Beyzi, S. B. (2022). Treatment of alfalfa silage with chitosan at different levels to determine chemical, nutritional, fermentation, and microbial parameters. Journal of Animal and Feed Science, 31, 73–80. https://doi.org/10.22358/jafs/147014/2022
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.