Effects of Heat and Drought Stress on Sustainable Agriculture and Future Food Security in Türkiye

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i6.1093-1103.6619

Keywords:

climate change, food security, sustainable production, plant phenotyping

Abstract

This review investigates the effects of heat and drought stress on future food security of Turkish agriculture. Temperature average is expected to rise to 3.2°C at the end of the current century while annual precipitation will decline more than 10% in the west and south and rise by 20% in the north of Türkiye, implying that climate change will affect ecosystem sustainability. It is therefore crucial to develop strategies to mitigate and adapt to climate change such as adjusting the planting schedule, reduced tillage, fertiliser microdosing, pre-sowing seed treatment, and the application of growth promoting bacteria to improve tolerance to stress by comprehending how plants respond physiologically and biochemically under these stress conditions. Long-term heat stress may hinder photosynthetic electron transport, decreasing the plant's ability to make use of energy for photosynthesis. The immediate response of plants under drought stress involves closing stomatal openings to reduce water loss through stomatal conductance. Combined heat and drought stress have a greater adverse effect on plant development and production than their effects in isolation. Plant phenotyping can play a major role in “climate-proofing” Turkish agriculture through the identification and development of crop varities with improved prouctivity, climate resilience and input requirements. Digital agriculture will also improve the efficiency of Turkish agricultural systems as the adapt to a hotter drier climate. To ensure future food security and the viability of the agro-economic system in Türkiye steps must be taken to make Turkish agriculture more robust in preparation for the impacts of climate change.

Author Biography

Serpil Bas, Konya Food and Agriculture University, Biotechnology Department, 42080 Konya, Turkiye

Biotechnology Department

References

Ağaçayak, T., & Keyman, F. (2018). Water and food security in Türkiye in a changing climate. IPC Policy Brief, 1-11.

Ahmed, N., Areche, F. O., Cotrina Cabello, G. G., Córdova Trujillo, P. D., Sheikh, A. A., & Abiad, M. G. (2022). Intensifying Effects of Climate Change in Food Loss: A Threat to Food Security in Türkiye. Sustainability, 15(1), 350. https://doi.org/10.3390/su15010350

Araus, J. L., Kefauver, S. C., Vergara‐Díaz, O., Gracia‐Romero, A., Rezzouk, F. Z., Segarra, J., Buchaillot, M. L., Chang‐Espino, M., Vatter, T., Sanchez‐Bragado, R., Fernandez‐Gallego, J. A., Serret, M. D. & Bort, J. (2022). Crop phenotyping in a context of global change: What to measure and how to do it. Journal of Integrative Plant Biology, 64(2), 592-618.

Bashir, K., Matsui, A., Rasheed, S., & Seki, M. (2019). Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000Research, 8, F1000 Faculty Rev–658. https://doi.org/10.12688/f1000research.18424.1

Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31(1), 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423

Bozoglu, M., BAŞER, U., Eroglu, N. A., & Topuz, B. K. (2019). Impacts of climate change on Turkish agriculture. Journal of International Environmental Application and Science, 14(3), 97-103. https://doi.org/10.1007/s13762-019-02321-9

Chen, L., Chen, Q., Kong, L., Xia, F., Yan, H., Zhu, Y., & Mao, P. (2016). Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions. Frontiers in Plant Science, 7, 896. https://doi.org/10.3389/fpls.2016.00896

Çiftçi, Y. O. (2018). Next generation plant breeding. BoD – Books on Demand. https://doi.org/10.1037/0000048-000

Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B., & Mittler, R. (2021). Meta–analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171(1), 66–76. https://doi.org/10.1111/ppl.13203

Costa, J. M., Marques da Silva, J., Pinheiro, C., Barón, M., Mylona, P., Centritto, M., Haworth, M., Loreto, F., Uzilday, B., Turkan, I., & Oliveira, M. M. (2019). Opportunities and Limitations of Crop Phenotyping in Southern European Countries. Frontiers in Plant Science, 10, 1125. https://doi.org/10.3389/fpls.2019.01125

Crafts–Brandner, S. J., & Salvucci, M. E. (2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences, 97(24), 13430–13435. https://doi.org/10.1073/pnas.230451497

Crafts–Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiology, 129(4), 1773–1780. https://doi.org/10.1104/pp.002170

Dar, W. D., & Laxmipathi Gowda, C. L. (2013). Declining Agricultural Productivity and Global Food Security. Journal of Crop Improvement, 27(2), 242–254. https://doi.org/10.1080/15427528.2011.653097

Davies, W. J., & Zhang, J. (1991). Root Signals and the Regulation of Growth and Development of Plants in Drying Soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 55–76. https://doi.org/10.1146/annurev.pp.42.060191.000415

Deery, D., Jimenez–Berni, J., Jones, H., Sirault, X., & Furbank, R. (2014). Proximal Remote Sensing Buggies and Potential Applications for Field–Based Phenotyping. Agronomy, 4(3), 349–379. https://doi.org/10.3390/agronomy4030349

Dellal, I., & Unuvar, F. (2019). Effect of climate change on food supply of Türkiye. J Environ Prot Ecol, 20(2), 692-700. https://doi.org/10.3390/su15010350

Doğan, H. G., & Kan, A. (2019). The effect of precipitation and temperature on wheat yield in Türkiye: A panel FMOLS and panel VECM approach. Environment, Development and Sustainability, 21(1), 447–460. https://doi.org/10.1007/s10668-018-0298-5

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8, 1147. https://www.frontiersin.org/articles/10.3389/fpls.2017.01147

Feller, U., Crafts–Brandner, S. J., & Salvucci, M. E. (1998). Moderately High Temperatures Inhibit Ribulose–1,5–Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase–Mediated Activation of Rubisco1. Plant Physiology, 116(2), 539–546. https://doi.org/10.1104/pp.116.2.539

Flexas, J., Bota, J., Escalona, J. M., Sampol, B., & Medrano, H. (2002). Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29(4), 461–471. https://doi.org/10.1071/pp01119

Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2020). Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy, 11(1), 56.

Fukushima, A., Kusano, M., Redestig, H., Arita, M., & Saito, K. (2009). Integrated omics approaches in plant systems biology. Current Opinion in Chemical Biology, 13(5–6), 532–538. https://doi.org/10.1016/j.cbpa.2009.09.022

Geng, S. M., Yan, D. H., Zhang, T. X., Weng, B. S., Zhang, Z. B., & Qin, T. L. (2015). Effects of drought stress on agriculture soil. Natural Hazards, 75, 1997–2011. https://doi.org/10.1007/s11069-014-1409-8

Govindaraj, M., Pattanashetti, S. K., Patne, N., Kanatti, A. A., & Ciftci, Y. O. (2018). Breeding Cultivars for Heat Stress Tolerance in Staple Food Crops. In Next Generation Plant Breeding, 45–74. https://doi.org/10.5772/intechopen.76480

Haworth, M., Marino, G., Atzori, G., Fabbri, A., Daccache, A., Killi, D., Carli, A., Montesano, V., Conte, A., Balestrini, R., & Centritto, M. (2023). Plant Physiological Analysis to Overcome Limitations to Plant Phenotyping. Plants, 12(23), 4015. https://doi.org/10.3390/plants12234015

Haworth, M., Marino, G., Brunetti, C., Killi, D., De Carlo, A., & Centritto, M. (2018). The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)—A Case Study of the 2017 Heat Wave. Plants. 7(4), 76. https://doi.org/10.3390/plants7040076

Haworth, M., Marino, G., Riggi, E., Avola, G., Brunetti, C., Scordia, D., Testa, G., Thiago Gaudio Gomes, M., Loreto, F., Luciano Cosentino, S., & Centritto, M. (2019). The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. Annals of Botany, 124(4), 567–579. https://doi.org/10.1093/aob/mcy223

Heckathorn, S. A., Downs, C. A., Sharkey, T. D., & Coleman, J. S. (1998). The Small, Methionine–Rich Chloroplast Heat–Shock Protein Protects Photosystem II Electron Transport during Heat Stress. Plant Physiology, 116(1), 439–444. https://doi.org/10.1104/pp.116.1.439

Hermans, K., & McLeman, R. (2021). Climate change, drought, land degradation and migration: Exploring the linkages. Current Opinion in Environmental Sustainability, 50, 236–244. https://doi.org/10.1016/j.cosust.2021.04.013

Jacobsen, S. E., Jensen, C. R., & Liu, F. (2012). Improving crop production in the arid Mediterranean climate. Field Crops Research, 128, 34-47.

Kamal, N. M., Gorafi, Y. S. A., Abdelrahman, M., Abdellatef, E., & Tsujimoto, H. (2019). Stay–Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. International Journal of Molecular Sciences, 20(23), 5837. https://doi.org/10.3390/ijms20235837

Kavas, M., Baloğlu, M., Akça, O., Köse, F., & Gökcay, D. (2013). Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turkish Journal of Biology, 37(4), 491–498. https://doi.org/10.3906/biy-1210-55

Khan, M. I. R., Palakolanu, S. R., Chopra, P., Rajurkar, A. B., Gupta, R., Iqbal, N., & Maheshwari, C. (2021). Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. Physiologia Plantarum, 172(2), 645–668. https://doi.org/10.1111/ppl.13223

Killi, D., & Haworth, M. (2017). Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress. Plants, 6(4), 49. https://doi.org/10.3390/plants6040049

Killi, D., Bussotti, F., Raschi, A., & Haworth, M. (2017). Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia Plantarum, 159(2), 130–147. https://doi.org/10.1111/ppl.12490

Killi, D., Raschi, A., & Bussotti, F. (2020). Lipid Peroxidation and Chlorophyll Fluorescence of Photosystem II Performance during Drought and Heat Stress is Associated with the Antioxidant Capacities of C3 Sunflower and C4 Maize Varieties. International Journal of Molecular Sciences, 21(14), 4846. https://doi.org/10.3390/ijms21144846

Kumar, A., Anju, T., Kumar, S., Chhapekar, S. S., Sreedharan, S., Singh, S., Choi, S. R., Ramchiary, N., & Lim, Y. P. (2021). Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. International Journal of Molecular Sciences, 22(15), 8093. https://doi.org/10.3390/ijms22158093

Kumari, V. V., Roy, A., Vijayan, R., Banerjee, P., Verma, V. C., Nalia, A., Pramanik, M., Mukherjee, B., Ghosh, A., Reja, M. H., Chandran, M. A. S., Nath, R., Skalicky, M., Brestic, M., & Hossain, A. (2021). Drought and Heat Stress in Cool–Season Food Legumes in Sub–Tropical Regions: Consequences, Adaptation, and Mitigation Strategies. Plants, 10(6), 1038. https://doi.org/10.3390/plants10061038

Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212–222. https://doi.org/10.1002/fes3.96

Marino, G., Pallozzi, E., Cocozza, C., Tognetti, R., Giovannelli, A., Cantini, C., & Centritto, M. (2014). Assessing gas exchange, sap flow and water relations using tree canopy spectral reflectance indices in irrigated and rainfed Olea europaea L. Environmental and Experimental Botany, 99, 43–52. https://doi.org/10.1016/j.envexpbot.2013.10.008

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

Naseem, H., & Bano, A. (2014). Role of plant growth–promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689–701. https://doi.org/10.1080/17429145.2014.902125

Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. Agronomy, 9(11), 712. https://doi.org/10.3390/agronomy9110712

Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Adv Plants Agriculture Research, 8(1), 34–37. https://doi.org/10.15406/apar.2018.08.00288

Ozdogan, B., Gacar, A., & Aktas, H. (2017). DIGITAL AGRICULTURE PRACTICES IN THE CONTEXT OF AGRICULTURE 4.0. Journal of Economics Finance and Accounting, 4(2), 186–193. https://doi.org/10.17261/Pressacademia.2017.448

Patil, A., & Lamnganbi, M. (2018). Impact of climate change on soil health: A review. Int. J. Chem. Stud, 6(3), 2399–2404.

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta–analysis. New Phytologist, 182(3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x

Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of Pre–Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress. Scientific Reports, 9(1), 6955. https://doi.org/10.1038/s41598-019-43477-z

Saglam, A., Kadioglu, A., Demiralay, M., & Terzi, R. (2014). Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Botanica Croatica, 73(2), 315–323. https://doi.org/10.2478/botcro-2014-0012

Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and Heat–Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Frontiers in Plant Science, 9, 1705. https://doi.org/10.3389/fpls.2018.01705

Şekercioğlu, Ç. H., Anderson, S., Akçay, E., Bilgin, R., Can, Ö. E., Semiz, G., Tavşanoğlu, Ç., Yokeş, M.B., Soyumert, A., Ipekdal, K., Sağlam, İ.K., Yücel, M. & Dalfes, H. N. (2011). Türkiye’s globally important biodiversity in crisis. Biological Conservation, 144(12), 2752-2769.

Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28(3), 269–277. https://doi.org/10.1111/j.1365-3040.2005.01324.x

Sharma, S. B., & Gobi, T. A. (2016). Impact of Drought on Soil and Microbial Diversity in Different Agroecosystems of the Semiarid Zones. Plant, Soil and Microbes, 1, 149–162. https://doi.org/10.1007/978-3-319-27455-3_8

Spiertz, J. H. J., Hamer, R. J., Xu, H., Primo–Martin, C., Don, C., & van der Putten, P. E. L. (2006). Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. European Journal of Agronomy, 25(2), 89–95. https://doi.org/10.1016/j.eja.2006.04.012

Steinwand, M. A., & Ronald, P. C. (2020). Crop biotechnology and the future of food. Nature Food, 1(5), 273–283. https://doi.org/10.1038/s43016-020-0072-3

Talebpour, B., Türker, U., & Yegül, U. (2015). The Role of Precision Agriculture in the Promotion of Food Security. International Journal of Agricultural and Food Research. 4(1), 1–23. https://doi.org/10.24102/ijafr.v4i1.472

Tardieu, F., & Davies, W. J. (1992). Stomatal Response to Abscisic Acid Is a Function of Current Plant Water Status. Plant Physiology, 98(2), 540–545. https://doi.org/10.1104/pp.98.2.540

Tatar, Ö. (2016). Climate change impacts on crop production in Türkiye. Journal of Agriculture, 59(2), 135–140

The World Bank. (2022). World Development Indicators. Agriculture, forestry, and fishing, value added (% of GDP) – Turkiye. Available from Agriculture, forestry, and fishing, value added (% of GDP) – Turkiye | Data (worldbank.org) (Accessed 27 December 2023)

Timmusk, S., Kim, S. B., Nevo, E., Abd El Daim, I., Ek, B., Bergquist, J., & Behers, L. (2015). Sfp–type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Frontiers in Microbiology, 6, 387. https://doi.org/10.3389/fmicb.2015.00387

TÜİK. (2023). Turkish Statistical Institute. Data Portal for Statistics. Available from https://data.tuik.gov.tr/Kategori/GetKategori?p=dis–ticaret–104&dil=1 (Accessed 27 December 2023)

Yavuz, D., Baştaş, K. K., Seymen, M., Yavuz, N., Kurtar, E. S., Süheri, S., Türkmen, Ö., Gür, A., & Kıymacı, G. (2023). Role of ACC deaminase–producing rhizobacteria in alleviation of water stress in watermelon. Scientia Horticulturae, 321, 112288. https://doi.org/10.1016/j.scienta.2023.112288

Yüksel, E., Ikizler, H., & Mutlu, A. E. (2021). How Does Climate Change Affect Food Consumption in Türkiye? (No. 62, pp. 1-5). The Economic Research Forum. https://erf.org.eg/app/uploads/2021/11/1638172323_341_347014_pb62_final.pdf

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez–Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2–12. https://doi.org/10.1111/ppl.12540

Zheng, W., Zeng, S., Bais, H., LaManna, J. M., Hussey, D. S., Jacobson, D. L., & Jin, Y. (2018). Plant Growth–Promoting Rhizobacteria (PGPR) Reduce Evaporation and Increase Soil Water Retention. Water Resources Research, 54(5), 3673–3687. https://doi.org/10.1029/2018WR022656

Zsögön, A., Cermak, T., Voytas, D., & Peres, L. E. P. (2017). Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science, 256, 120–130. https://doi.org/10.1016/j.plantsci.2016.12.012

Downloads

Published

10.06.2024

How to Cite

Bas, S., & Killi, D. (2024). Effects of Heat and Drought Stress on Sustainable Agriculture and Future Food Security in Türkiye . Turkish Journal of Agriculture - Food Science and Technology, 12(6), 1093–1103. https://doi.org/10.24925/turjaf.v12i6.1093-1103.6619

Issue

Section

Review Articles