Emerging Trends of Immunosensors Development for Detection of Food Toxins

Authors

  • Fabien Nsanzabera Department of Education in Sciences, Faculty of Education, University of Technology and Arts of Byumba (UTAB), P.O. Box 25 Byumba – Gicumbi – Rwanda https://orcid.org/0000-0002-7117-7730
  • Aimable Mwiseneza Department of Education in Sciences, Faculty of Education, University of Technology and Arts of Byumba (UTAB), P.O. Box 25 Byumba – Gicumbi – Rwanda https://orcid.org/0009-0000-2861-6868
  • Evangeline Irakoze Department of Education in Sciences, Faculty of Education, University of Technology and Arts of Byumba (UTAB), P.O. Box 25 Byumba – Gicumbi – Rwanda https://orcid.org/0009-0003-4018-1635
  • Jean Bosco Nsengiyumva Department of Education in Sciences, Faculty of Education, University of Technology and Arts of Byumba (UTAB), P.O. Box 25 Byumba – Gicumbi – Rwanda https://orcid.org/0009-0006-8994-8261
  • Barthazar Nduwayezu Department of Food Science and Technology, School of Agriculture and Food Science, College of Agriculture Animal Science and Veterinary Medicine, University of Rwanda, Rwanda https://orcid.org/0000-0001-6150-7989
  • Alexis Manishimwe Department of Education in Sciences, Faculty of Education, University of Technology and Arts of Byumba (UTAB), P.O. Box 25 Byumba – Gicumbi – Rwanda https://orcid.org/0009-0008-8144-7942
  • Fabien Nkurikiyimana Department of Education in Sciences, Faculty of Education, University of Technology and Arts of Byumba (UTAB), P.O. Box 25 Byumba – Gicumbi – Rwanda https://orcid.org/0009-0009-4340-3532

DOI:

https://doi.org/10.24925/turjaf.v12i6.1046-1060.6800

Keywords:

Immunosensor, ELISA, SPR, Biosensor, food toxin, foodborne, limit of detection

Abstract

The present study highlights the ongoing threat of foodborne illnesses to public health, primarily caused by bacterial pathogens. Despite advancements in conventional microbiological testing techniques, which are sensitive but time-consuming, challenges remain in ensuring timely detection of contaminants throughout the food supply chain. The Hazard Analysis Critical Control Point (HACCP) system is recognized as a more effective approach to ensuring food safety, emphasizing proactive identification and control of hazards at critical points in production. Emerging technologies like quantitative polymerase chain reaction (PCR) and biosensors offer faster and more accurate detection methods, although with certain limitations. Biosensors such as ELISA, SPR, and electrochemical immunosensors, in particular, show promise due to their high sensitivity and specificity, enabling rapid detection of a wide range of contaminants. This paper underscores the importance of integrating advanced technologies with established food safety protocols to enhance the safety and quality of food products, benefiting consumers, producers, and regulatory agencies alike.

References

Ahuja, V., Singh, A., Paul, D., Dasgupta, D., Urajová, P., Ghosh, S., Saurav, K. (2023). Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chemical Research in Toxicology, 36(12), 1834-1863. https://doi.org/10.1021/acs.chemrestox.3c00241

Ali Khalafi-Nezhad, F. P. (2012). Immobilized palladium nanoparticles on silicaestarch substrate (PNPeSSS): As a stable and efficient heterogeneous catalyst for synthesis of p-teraryls using Suzuki reaction. Journal of Organometallic Chemistry, 717 141-146.

Ambrosetti, E., Conti, M., Teixeira, A. I., & Zilio, S. D. (2022). Patterned Carboxymethyl-Dextran Functionalized Surfaces Using Organic Mixed Monolayers for Biosensing Applications. ACS Applied Bio Materials, 5(7), 3310-3319. https://doi.org/10.1021/acsabm.2c00311

Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. M. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(1), 51. https://doi.org/10.1186/s40066-017-0130-8

Baranwal, J., Barse, B., Gatto, G., Broncova, G., & Kumar, A. (2022). Electrochemical Sensors and Their Applications: A Review. Chemosensors, 10(9), 363. https://doi.org/10.3390/chemosensors10090363

Byung-Keun Oh, W. L., Young-Kee Kim, Won Hong Lee, Jeong-Woo Choi. (2004). Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology, 111, 1–8.

Calabria, D., Zangheri, M., Pour, S. R. S., Trozzi, I., Pace, A., Lazzarini, E., Guardigli, M. (2022). Luminescent Aptamer-Based Bioassays for Sensitive Detection of Food Allergens. Biosensors, 12(8), 644. https://doi.org/10.3390/bios12080644

Celine Morissette, J. G., and Gilles Lamoureux. (1991). Rapid and Sensitive Sandwich Enzyme-Linked Immunosorbent Assay for Detection of Staphylococcal Enterotoxin B in Cheese. Appl Environ Microbiol, 57, 836-842.

Chen, L., Lv, D., Wang, S., Wang, D., Chen, X., Liu, Y., . . . Chai, Y. (2020). Surface Plasmon Resonance-Based Membrane Protein-Targeted Active Ingredients Recognition Strategy: Construction and Implementation in Ligand Screening from Herbal Medicines. Analytical Chemistry, 92(5), 3972-3980. https://doi.org/10.1021/acs.analchem.9b05479

David, S., Gheorghiu, M., Daakour, S., Munteanu, R.-E., Polonschii, C., Gáspár, S., . . . Gheorghiu, E. (2022). Real Time SPR Assessment of the Structural Changes of Adaptive Dynamic Constitutional Frameworks as a New Route for Sensing. Materials, 15(2), 483. https://doi.org/10.3390/ma15020483

Department Of Health And Human Services (2012.). Diseases Transmitted through the Food Supply.

Dhesingh Ravi Shankaran, K. V. G., Norio Miura. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B, 121 158–177.

Elbehiry, A., Abalkhail, A., Marzouk, E., Elmanssury, A. E., Almuzaini, A. M., Alfheeaid, H., . . . Abu-Okail, A. (2023). An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines, 11(4), 725. https://doi.org/10.3390/vaccines11040725

Franco-Duarte, R., Černáková, L., Kadam, S., S. Kaushik, K., Salehi, B., Bevilacqua, A., . . . Rodrigues, C. F. (2019). Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms, 7(5), 130. https://doi.org/10.3390/microorganisms7050130

Frenea-Robin, M., & Marchalot, J. (2022). Basic Principles and Recent Advances in Magnetic Cell Separation. Magnetochemistry, 8(1), 11. https://doi.org/10.3390/magnetochemistry8010011

G J Doellgast, M. X. T., G A Beard, J D Bottoms, T Cheng, B H Roh, M G Roman, P A Hall and J E Brown. (1993). Sensitive enzyme-linked immunosorbent assay for detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay. J. Clin. Microbiol., 31(9), 2402.

Gizaw, Z. (2019). Public health risks related to food safety issues in the food market: a systematic literature review. Environmental Health and Preventive Medicine, 24(1). https://doi.org/10.1186/s12199-019-0825-5

Guliy, O. I., Karavaeva, O. A., Smirnov, A. V., Eremin, S. A., & Bunin, V. D. (2023). Optical Sensors for Bacterial Detection. Sensors, 23(23), 9391. https://doi.org/10.3390/s23239391

Hang Wei, J.-J. S., Yu Xie, Cong-Gui Lin, Yan-Min Wang, Wen-Hui Yin, Guo-Nan Chen. ( 2007). Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure. Analytica Chimica Acta, 588, 297–303.

Hou, F., Sun, S., Abdullah, S. W., Tang, Y., Li, X., & Guo, H. (2023). The application of nanoparticles in point-of-care testing (POCT) immunoassays. Analytical Methods, 15(18), 2154-2180. https://doi.org/10.1039/d3ay00182b

Iftikhar, F. J., Shah, A., Wali, Q., & Kokab, T. (2023). Advancements in Nanofiber-Based Electrochemical Biosensors for Diagnostic Applications. Biosensors, 13(4), 416. https://doi.org/10.3390/bios13040416

Janik-Karpinska, E., Ceremuga, M., Niemcewicz, M., Podogrocki, M., Stela, M., Cichon, N., & Bijak, M. (2022). Immunosensors—The Future of Pathogen Real-Time Detection. Sensors, 22(24), 9757. https://doi.org/10.3390/s22249757

John Waswa, J. I., Chitrita DebRoy. (2007). Direct detection of E. Coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT, 40, 187–192.

Lazanas, A. C., & Prodromidis, M. I. (2023). Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au, 3(3), 162-193. https://doi.org/10.1021/acsmeasuresciau.2c00070

Leka, O., Wu, Y., Zanetti, G., Furler, S., Reinberg, T., Marinho, J., Kammerer, R. A. (2023). A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-44102-4

M. Uyttendaele, I. V. H., J. Debevere. (2000). The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L monocytogenes in cheese. International Journal of Food Microbiology, 54 205–212.

Malin BostroÈm Caselunghe, J. L. (2000). Biosensor-based determination of folic acid in fortified food. Food Chemistry, 70, 523±532.

Martínez-Periñán, E., Gutiérrez-Sánchez, C., García-Mendiola, T., & Lorenzo, E. (2020). Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors, 10(9), 118. https://doi.org/10.3390/bios10090118

Mazur, F., Tjandra, A. D., Zhou, Y., Gao, Y., & Chandrawati, R. (2023). Paper-based sensors for bacteria detection. Nature Reviews Bioengineering, 1(3), 180-192. https://doi.org/10.1038/s44222-023-00024-w

Mechaly, A., Diamant, E., Alcalay, R., Ben David, A., Dor, E., Torgeman, A., . . . Mazor, O. (2022). Highly Specific Monoclonal Antibody Targeting the Botulinum Neurotoxin Type E Exposed SNAP-25 Neoepitope. Antibodies, 11(1), 21. https://doi.org/10.3390/antib11010021

Merkoci, B. P.-L. A. A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22, 625-639.

Moegiratul Amaro, S. O., Werasak Surareungchai. (2012). Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosensors and Bioelectronics, 38 157–162.

Moises, S., & Schaeferling, M. (2009). Toxin immunosensors and sensor arrays for food quality control. Bioanalytical Reviews, 1, 73-104. https://doi.org/10.1007/s12566-009-0006-x

Moises, S. S. S., Michael. (2009). Toxin immunosensors and sensor arrays for food quality control. Bioanalytical Reviews, 1(1), 73-104. https://doi.org/10.1007/s12566-009-0006-x

Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 21(4), 1109. https://doi.org/10.3390/s21041109

Ndunda, E. N., & Mwanza, M. M. (2023). Towards miniaturized electrochemical sensors for monitoring of polychlorinated biphenyls. Open Research Africa, 6, 5. https://doi.org/10.12688/openresafrica.13983.1

Neethirajan, S., Weng, X., Tah, A., Cordero, J. O., & Ragavan, K. V. (2018). Nano-biosensor platforms for detecting food allergens – New trends. Sensing and Bio-Sensing Research, 18, 13-30. https://doi.org/10.1016/j.sbsr.2018.02.005

Nguyen, H.-L. T., Nguyen, H.-L., Le, P.-A., Nguyen, T.-T., Luu, M.-Q., & Pham, Y. (2024). A versatile immunoassay based on functionalized nanoparticles for botulinum neurotoxin detection and sensor development. Discover Applied Sciences, 6(5). https://doi.org/10.1007/s42452-024-05900-7

Paimard, G., Ghasali, E., & Baeza, M. (2023). Screen-Printed Electrodes: Fabrication, Modification, and Biosensing Applications. Chemosensors, 11(2), 113. https://doi.org/10.3390/chemosensors11020113

Paniel, & Noguer. (2019). Detection of Salmonella in Food Matrices, from Conventional Methods to Recent Aptamer-Sensing Technologies. Foods, 8(9), 371. https://doi.org/10.3390/foods8090371

Paul Leonard, S. H., Joanne Brennan, Lynsey Dunne, John Quinn,Trinad Chakraborty, Richard O’Kennedy,. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32 3–13.

Qiuming Yu, S. C., Allen D. Taylor,Jiri´ Homola, Bertold Hock, Shaoyi Jiang. (2005). Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B, 107, 193–201.

Rahimi, F., Chatzimichail, S., Saifuddin, A., Surman, A. J., Taylor-Robinson, S. D., & Salehi-Reyhani, A. (2020). A Review of Portable High-Performance Liquid Chromatography: the Future of the Field? Chromatographia, 83(10), 1165-1195. https://doi.org/10.1007/s10337-020-03944-6

Ricci, F. V., G. Micheli, L. Palleschi, G. (2007). A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta, 605(2), 111-129. https://doi.org/10.1016/j.aca.2007.10.046

Saftics, A., Kurunczi, S., Peter, B., Szekacs, I., Ramsden, J. J., & Horvath, R. (2021). Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Advances in Colloid and Interface Science, 294, 102431. https://doi.org/10.1016/j.cis.2021.102431

Saini, R. V., Vaid, P., Saini, N. K., Siwal, S. S., Gupta, V. K., Thakur, V. K., & Saini, A. K. (2021). Recent Advancements in the Technologies Detecting Food Spoiling Agents. Journal of Functional Biomaterials, 12(4), 67. https://doi.org/10.3390/jfb12040067

Sauli, E., Armstrong, C. M., Capobianco, J. A., & Lee, J. (2024). Magnetic capture device for large volume sample analysis. PLOS ONE, 19(2), e0297806. https://doi.org/10.1371/journal.pone.0297806

Serrano-Pertierra, E., Oliveira-Rodríguez, M., Matos, M., Gutiérrez, G., Moyano, A., Salvador, M., Blanco-López, M. C. (2020). Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules, 10(6). https://doi.org/10.3390/biom10060824

Siamak P. Yazdankhah, L. S., Sigrid Simonsen, Egil Olsen. (1999). Development and evaluation of an immunomagnetic separation-ELISA for the detection of Staphylococcus aureus thermostable nuclease in composite milk. Veterinary Microbiology, 67, 113±125.Sruti Chattopadhyay, A. K., Swati Jain, Harpal Singh ( 2013). Sensitive detection of food-borne pathogen Salmonella by modified PAN fibers-immunoassay. Biosensors and Bioelectronics, 45, 274–280.

Susana Liébana, A. L., Susana Campoy, María Pilar Cortés, Salvador Alegret, María Isabel Pividori,. (2009). Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosensors and Bioelectronics, 25 510–513.

Swati Jain, S. C., Richa Jackeray, C.K.V. Zainul Abid, Guneet Singh Kohli, Harpal Singh. (2012). Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosensors and Bioelectronics, 31, 37– 43.

Tessaro, L., Aquino, A., de Almeida Rodrigues, P., Joshi, N., Ferrari, R. G., & Conte-Junior, C. A. (2022). Nucleic Acid-Based Nanobiosensor (NAB) Used for Salmonella Detection in Foods: A Systematic Review. Nanomaterials, 12(5), 821. https://doi.org/10.3390/nano12050821

Tokarskyy, O., & Marshall, D. L. (2008). Immunosensors for rapid detection of Escherichia coli O157:H7 - perspectives for use in the meat processing industry. Food Microbiol, 25(1), 1-12. https://doi.org/10.1016/j.fm.2007.07.005

Tomoyuki Kadota, Y. T., Satoshi Hirano, Osamu Tajima, Chris M. Maragos, Takashi Nakajima, Toshitsugu Tanaka, Yoichi Kamata, Yoshiko Sugita-Konishi. (2010). Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay. Analytica Chimica Acta, 673, 173–178.

Vidic, J., Vizzini, P., Manzano, M., Kavanaugh, D., Ramarao, N., Zivkovic, M., . . . Gadjanski, I. (2019). Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. Sensors, 19(5), 1100. https://doi.org/10.3390/s19051100

Vinayaka, A. C., Ngo, T. A., Kant, K., Engelsmann, P., Dave, V. P., Shahbazi, M.-A., . . . Bang, D. D. (2019). Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosensors and Bioelectronics, 129, 224-230. https://doi.org/10.1016/j.bios.2018.09.078

Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown, C. W., Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sensors, 3(10), 1894-2024. https://doi.org/10.1021/acssensors.8b00420

Wang, P., Sun, H., Yang, W., & Fang, Y. (2022). Optical Methods for Label-Free Detection of Bacteria. Biosensors (Basel), 12(12). https://doi.org/10.3390/bios12121171

Weinroth, M. D., Belk, A. D., & Belk, K. E. (2018). History, development, and current status of food safety systems worldwide. Animal Frontiers, 8(4), 9-15. https://doi.org/10.1093/af/vfy016

Wills, A. G., Charvet, S., Battilocchio, C., Scarborough, C. C., Wheelhouse, K. M. P., Poole, D. L., Vantourout, J. C. (2021). High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Organic Process Research & Development, 25(12), 2587-2600. https://doi.org/10.1021/acs.oprd.1c00167

Wu, S., Duan, N., Gu, H., Hao, L., Ye, H., Gong, W., & Wang, Z. (2016). A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 8(176). https://doi.org/10.3390/toxins8070176

X.D. Hoa, A. G. K., M. Tabrizian. (2007). Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors and Bioelectronics, 23, 151–160.

Xhoxhi, M., Dudia, A., & Ymeti, A. (2015). Interferometric Evanescent Wave Biosensor Principles and Parameters. IOSR Journal of Applied Physics, 7(1), 84-96. https://doi.org/10.9790/4861-07618496

Ying Li, X. L., Zhao Lin. (2012). Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chemistry, 132 1549–1554.

Yongcheng Liu, Y. C., Yanbin Li. (2001). Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method. Sensors and Actuators B, 72, 214±218.

Yongcheng Liu, Y. L. (2002). Detection of Escherichia coli O157:H7 using immunomagnetic separation and absorbance measurement. Journal of Microbiological Methods, 51 369–377.

Zhang, Y., Min, C., Dou, X., Wang, X., Urbach, H. P., Somekh, M. G., & Yuan, X. (2021). Plasmonic tweezers: for nanoscale optical trapping and beyond. Light: Science & Applications, 10(1). https://doi.org/10.1038/s41377-021-00474-0

Zhouli Wang, T. Y., Yahong Yuan, Rui Cai, Chen Niu, Caixia Guo. (2013). Preparation of immunomagnetic nanoparticles for the separation and enrichment of Alicyclobacillus spp. in apple juice. Food Research International, 54, 302–310.

Downloads

Published

10.06.2024

How to Cite

Nsanzabera, F., Mwiseneza, A., Irakoze, E., Nsengiyumva, J. B., Nduwayezu, B., Manishimwe, A., & Nkurikiyimana, F. (2024). Emerging Trends of Immunosensors Development for Detection of Food Toxins. Turkish Journal of Agriculture - Food Science and Technology, 12(6), 1046–1060. https://doi.org/10.24925/turjaf.v12i6.1046-1060.6800

Issue

Section

Research Paper