A Gastronomic Approach to Industrial Aquaculture Waste Utilization
DOI:
https://doi.org/10.24925/turjaf.v12i10.1849-1857.6815Keywords:
Aquaculture, Gastronomy, Waste management, Sustainable food processingAbstract
Aquaculture, while offering significant contributions to global food security, generates substantial amounts of industrial waste, posing environmental and economic challenges. However, this waste also presents untapped potential for innovation in gastronomy. This paper explores the emerging trend of utilizing aquaculture industrial wastes in culinary practices, aiming to reduce waste, promote sustainability, and create novel gastronomic experiences. Through a review of literature and case studies, we examine various methods for repurposing aquaculture waste, including upcycling into new food products, incorporation into culinary dishes, and extraction of valuable components. Additionally, we highlight successful initiatives that have integrated aquaculture waste into gastronomy, emphasizing the benefits of waste reduction, sustainable food practices, and culinary innovation. Challenges such as food safety, taste, and consumer acceptance are acknowledged, with strategies proposed for addressing these issues. Finally, we discuss future directions for research and development in this field, identifying opportunities for collaboration between the aquaculture industry and the gastronomy sector. By exploring the utilization of aquaculture industrial wastes in gastronomy, this paper contributes to a deeper understanding of sustainable food practices and culinary creativity in the context of aquaculture waste management.
References
Akrivou, C. (2022). Industrial symbiosis marketplace concept for waste valorization pathways. E3s Web of Conferences, 349, 11005. https://doi.org/10.1051/e3sconf/202234911005
Al Khawli, F., Pateiro, M., Domínguez, R., Lorenzo, J. M., Gullón, P., Kousoulaki, K., ... & Barba, F. J. (2019). Innovative green technologies of intensification for valorization of seafood and their by-products. Marine Drugs, 17(12), 689.
Alvarado-Ramírez, L., Santiesteban-Romero, B., Poss, G., Sosa-Hernández, J., Iqbal, H., Parra-Saldívar, R., & Melchor-Martínez, E. (2023). Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Frontiers in Chemical Engineering,4 https://doi.org/10.3389/fceng.2022.1072761
Amirkolaie, A. (2011). Reduction in the environmental impact of waste discharged by fish farms through feed and feeding. Reviews in Aquaculture, 3(1), 19-26. https://doi.org/10.1111/j.1753-5131.2010.01040.x
Arvanitoyannis, I. S., & Tserkezou, P. (2014). Fish waste management. Seafood processing: Technology, quality and safety, 263-309.
Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating aquaculture systems (ras) analysis: main issues on management and future challenges. Aquacultural Engineering, 51, 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004
Baiano, A. (2014). Recovery of biomolecules from food wastes a review. Molecules, 19(9), 14821-14842. https://doi.org/10.3390/molecules190914821
Boronat, Ò., Sintes, P., Celis, F., Díez, M., Ortiz, J., Aguiló-Aguayo, I., & Martín-Gómez, H. (2023). Development of added-value culinary ingredients from fish waste: Fish bones and fish scales. International Journal of Gastronomy and Food Science, 31, 100657.
Bruno, S., Ekorong, F., Karkal, S., Cathrine, M., & Kudre, T. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: a review. Trends in Food Science & Technology, 85, 10-22. https://doi.org/10.1016/j.tifs.2018.12.004
Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Marine drugs, 18(12), 622.
Chertow, M. and Ehrenfeld, J. (2012). Organizing self‐organizing systems. Journal of Industrial Ecology, 16(1), 13-27. https://doi.org/10.1111/j.1530-9290.2011.00450.x
Cho, C. and Bureau, D. (1997). Reduction of waste output from salmonid aquaculture through feeds and feeding. The Progressive Fish-Culturist, 59(2), 155-160. https://doi.org/10.1577/1548-8640(1997)0592.3.co;2
Chopin, T., Buschmann, A., Halling, C., Troell, M., Kautsky, N., Neori, A., … & Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6), 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x
Dauda, A. (2019). Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 12(2), 1193-1210. https://doi.org/10.1111/raq.12379
Dikel, S. (2001). A Comparison of Growth Performance, Carcass and Body Composition of Oreochromis aureus, O. niloticus and their hybrids in concrete ponds in Çukurova Region (Türkiye). Ege Journal of Fisheries and Aquatic Sciences, 18(3).)
Dikel, S., & Demirkale, İ. (2019,). Su ürünlerinde gastronomi. In International Science and Research Congress (pp. 08-10). February Antalya /Alanya
Doménech, T., Bleischwitz, R., Doranova, A., Dimitris, P., & Román, L. (2019). Mapping industrial symbiosis development in europe_ typologies of networks, characteristics, performance and contribution to the circular economy. Resources Conservation and Recycling, 141, 76-98. https://doi.org/10.1016/j.resconrec.2018.09.016
Fernandes, P. (2016). Enzymes in fish and seafood processing. Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00059
Fric, U. and Rončević, B. (2018). E-simbioza – leading the way to a circular economy through industrial symbiosis in slovenia. Socijalna Ekologija, 27(2), 119-140. https://doi.org/10.17234/socekol.27.2.1
Frosi, I., Montagna, I., Colombo, R., Milanese, C., & Papetti, A. (2021). Recovery of chlorogenic acids from agri-food wastes: updates on green extraction techniques. Molecules, 26(15), 4515. https://doi.org/10.3390/molecules26154515
Ghosh, P., Fawcett, D., Sharma, S., & Poinern, G. (2017). Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials, 10(8), 852. https://doi.org/10.3390/ma10080852
Jamilah, B., Tan, K. W., Hartina, M. U., & Azizah, A. (2011). Gelatins from three cultured freshwater fish skins obtained by liming process. Food hydrocolloids, 25(5), 1256-1260.
Kagali, R., Ogello, E., Kiama, C., Kim, H., Wullur, S., Sakakura, Y., … & Hagiwara, A. (2022). Culturing live foods for fish larviculture using non‐microalgal diet: the role of waste‐generated bacteria and selected commercial probiotics—a review. Aquaculture Fish and Fisheries, 2(2), 71-81. https://doi.org/10.1002/aff2.33
Karimi, S., Soofiani, N., Mahboubi, A., & Taherzadeh, M. (2018). Use of organic wastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability, 10(9), 3296. https://doi.org/10.3390/su10093296
Khiari, Z. (2022). Sustainable upcycling of fisheries and aquaculture wastes using fish-derived cold-adapted proteases. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.875697
Leyva‐López, N., Lizárraga-Velázquez, C., Hernández, C., & Sánchez-Gutiérrez, E. (2020). Exploitation of agro-industrial waste as potential source of bioactive compounds for aquaculture. Foods, 9(7), 843. https://doi.org/10.3390/foods9070843
Liu, W., Luo, G., Li, L., Wang, X., Wang, J., Ma, N., … & Tan, H. (2016). Nitrogen dynamics and biofloc composition using biofloc technology to treat aquaculture solid waste mixed with distillery spent wash. North American Journal of Aquaculture, 79(1), 27-35. https://doi.org/10.1080/15222055.2016.1223769
Machado, S., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M., & Nascimento, J. (2010). Evaluation of the geotechnical properties of msw in two brazilian landfills. Waste Management, 30(12), 2579-2591. https://doi.org/10.1016/j.wasman.2010.07.019
Magnabosco, G., Giuri, D., Bisceglie, A., Scarpino, F., Fermani, S., Tomasini, C., … & Falini, G. (2021). New material perspective for waste seashells by covalent functionalization. Acs Sustainable Chemistry & Engineering, 9(18), 6203-6208. https://doi.org/10.1021/acssuschemeng.1c01306
Martins, C., Eding, E., Verdegem, M., Heinsbroek, L., Schneider, O., Blancheton, J., … & Verreth, J. (2010). New developments in recirculating aquaculture systems in europe: a perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83-93. https://doi.org/10.1016/j.aquaeng.2010.09.002
May, C., Shankar, P., Afriyie-Gyawu, E., & Sittaramane, V. (2022). Recycling and repurposing food waste as feed for small-scale zebrafish (danio rerio) aquaculture. International Journal of Fisheries and Aquatic Studies, 10(1), 09-17. https://doi.org/10.22271/fish.2022.v10.i1a.2622
Messina, C., Arena, R., Manuguerra, S., Renda, G., Laudicella, V., Ficano, G., … & Santulli, A. (2021). Farmed gilthead sea bream (sparus aurata) by-products valorization: viscera oil ω-3 enrichment by short-path distillation and in vitro bioactivity evaluation. Marine Drugs, 19(3), 160.
Messina, C., Arena, R., Manuguerra, S., Barbera, L., Curcuraci, E., Renda, G., … & Santulli, A. (2022). Valorization of side stream products from sea cage fattened bluefin tuna (thunnus thynnus): production and in vitro bioactivity evaluation of enriched ω-3 polyunsaturated fatty acids. Marine Drugs, 20(5), 309. https://doi.org/10.3390/md20050309
Morris, J., Backeljau, T., & Chapelle, G. (2018). Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Reviews in Aquaculture, 11(1), 42-57. https://doi.org/10.1111/raq.12225
Munubi, R. and Lamtane, H. (2021). Animal waste and agro-by-products: valuable resources for producing fish at low costs in sub-saharan countries. https://doi.org/10.5772/intechopen.95057
Monteiro, M., Mársico, E., Torre, C., Ribeiro, R., Jesus, R., & Conte-Junior, C. (2014). Flours and instant soup from tilapia wastes as healthy alternatives to the food industry. Food Science and Technology Research, 20(3), 571-581. https://doi.org/10.3136/fstr.20.571
Mo, W., Man, Y., & Wong, M. (2018). Use of food waste, fish waste and food processing waste for china's aquaculture industry: needs and challenge. The Science of the Total Environment, 613-614, 635-643. https://doi.org/10.1016/j.scitotenv.2017.08.321
Mutalipassi, M., Esposito, R., Ruocco, N., Viel, T., Costantini, M., & Zupo, V. (2021). Bioactive compounds of nutraceutical value from fishery and aquaculture discards. Foods, 10(7), 1495. https://doi.org/10.3390/foods10071495
Nag, M., Lahiri, D., Dey, A., Sarkar, T., Pati, S., Joshi, S., … & Ray, R. (2022). Seafood discards: a potent source of enzymes and biomacromolecules with nutritional and nutraceutical significance. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.879929
Naomi, M., Hasan, Z., Hamdani, H., Andriani, Y., & Subhan, U. (2020). Growth of striped catfish fingerlings (pangasianodon hypophthalmus) in aquaponic system with fine bubbles (fbs) application. Asian Journal of Fisheries and Aquatic Research, 1-9. https://doi.org/10.9734/ajfar/2020/v7i230111
Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., ... & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024.
Neff, R., Overbey, K., Biehl, E., Deutsch, J., Gorski-Steiner, I., Pearson, P., … & Fry, J. (2021). Consumer seafood waste and the potential of a ‘direct-from-frozen’ approach to prevention. Foods, 10(11), 2524. https://doi.org/10.3390/foods10112524
Nguyễn, T., Barber, A., Corbin, K., & Zhang, W. (2017). Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0157-5
Nurilmala, M., Suryamarevita, H., Hizbullah, H. H., Jacoeb, A. M., & Ochiai, Y. (2022). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences, 29(2), 1100-1110.
Osmundsen, T., Almklov, P., & Tveterås, R. (2017). Fish farmers and regulators coping with the wickedness of aquaculture. Aquaculture Economics & Management, 21(1), 163-183. https://doi.org/10.1080/13657305.2017.1262476
Owojori, O., Edokpayi, J., Mulaudzi, R., & Odiyo, J. (2020). Characterisation, recovery and recycling potential of solid waste in a university of a developing economy. Sustainability, 12(12), 5111. https://doi.org/10.3390/su12125111
Qiao, G., Li, X., Li, J., Zhang, M., Shen, Y., Zhao, Z., … & Wang, T. (2022). An eco-friendly conversion of aquaculture suspended solid wastes into high-quality fish food by improving poly-β-hydroxybutyrate production. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.797625
Pathak, N., Singh, S., Singh, P., Singh, P., Singh, R., Bala, S., … & Tripathi, M. (2022). Valorization of jackfruit waste into value added products and their potential applications. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1061098
Pinela, J., Fuente, B., Rodrigues, M., Pires, T., Mandim, F., Almeida, A., … & Barros, L. (2022). Upcycling fish by-products into bioactive fish oil: the suitability of microwave-assisted extraction. Biomolecules, 13(1), 1. https://doi.org/10.3390/biom13010001
Puja, N., Rout, R. K., Kumar, T. D., Joshi, J., & Sivaranjani, S. (2024). Technologies for management of fish waste & value addition. Food and Humanity, 100228.
Saini, R., Song, M., Rengasamy, K., Ko, E., & Keum, Y. (2020). Red shrimp are a rich source of nutritionally vital lipophilic compounds: a comparative study among edible flesh and processing waste. Foods, 9(9), 1179. https://doi.org/10.3390/foods9091179
Sanz‐Lázaro, C. and Sánchez-Jérez, P. (2020). Regional integrated multi-trophic aquaculture (rimta): spatially separated, ecologically linked. Journal of Environmental Management, 271, 110921. https://doi.org/10.1016/j.jenvman.2020.110921
Schmitt, E., Belghit, I., Johansen, J., Leushuis, R., Lock, E., Melsen, D., … & Paul, A. (2019). Growth and safety assessment of feed streams for black soldier fly larvae: a case study with aquaculture sludge. Animals, 9(4), 189. https://doi.org/10.3390/ani9040189
Tabarestani H.S., Maghsoudlou Y., Motamedzadegan A., Mahoonak A.R.S. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss) Biores. Technol. 2010;101:6207–6214.
Tumilar, A., Milani, D., Cohn, Z., Florin, N., & Abbas, A. (2020). A modelling framework for the conceptual design of low-emission eco-industrial parks in the circular economy: a case for algae-centered business consortia. Water, 13(1), 69. https://doi.org/10.3390/w13010069
Turcios, A. and Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents—what can we learn from the past for the future?. Sustainability, 6(2), 836-856. https://doi.org/10.3390/su6020836
van Kessel, M. A., Mesman, R. J., Arshad, A., Metz, J. R., Spanings, F. T., van Dalen, S. C., ... & Op den Camp, H. J. (2016). Branchial nitrogen cycle symbionts can remove ammonia in fish gills. Environmental Microbiology Reports, 8(5), 590-594.
Vaskalis, I., Skoulou, V., Stavropoulos, G., & Zabaniotou, A. (2019). Towards circular economy solutions for the management of rice processing residues to bioenergy via gasification. Sustainability, 11(22), 6433. https://doi.org/10.3390/su11226433
Vázquez, J., Amado, I., Sotelo, C., Sanz, N., Pérez‐Martín, R., & Valcárcel, J. (2020). Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture turbot (scophthalmus maximus) wastes. Biomolecules, 10(2), 310. https://doi.org/10.3390/biom10020310
Vázquez, J., Meduíña, A., Durán, A., Nogueira, M., Fernández-Compás, A., Pérez‐Martín, R., … & Amado, I. (2019). Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Marine Drugs, 17(3), 139. https://doi.org/10.3390/md17030139
Venugopal, V. (2016). Enzymes from seafood processing waste and their applications in seafood processing., 47-69. https://doi.org/10.1016/bs.afnr.2016.06.004
Venugopal, V. (2021). Valorization of seafood processing discards: bioconversion and bio-refinery approaches. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.611835
Walls, J. and Paquin, R. (2015). Organizational perspectives of industrial symbiosis. Organization & Environment, 28(1), 32-53. https://doi.org/10.1177/1086026615575333
Wei, W., Wei, W., Gao, S., Chen, G., Yuan, J., & Liu, Y. (2021). Agricultural and aquaculture wastes as concrete components: a review. Frontiers in Materials, 8. https://doi.org/10.3389/fmats.2021.762568
Yeo, Z., Masi, D., Low, J., Ng, Y., Tan, P., & Barnes, S. (2019). Tools for promoting industrial symbiosis: a systematic review. Journal of Industrial Ecology, 23(5), 1087-1108. https://doi.org/10.1111/jiec.12846
Zimmermann, S., Kiessling, A., & Zhang, J. (2023). The future of intensive tilapia production and the circular bioeconomy without effluents: biofloc technology, recirculation aquaculture systems, bio‐ras, partitioned aquaculture systems and integrated multitrophic aquaculture. Reviews in Aquaculture, 15(S1), 22-31. https://doi.org/10.1111/raq.12744
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.