Evaluation of WEPP and Its Comparison with USLE and MUSLE in Yozgat-Kadılı Village

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i10.1684-1695.6895

Keywords:

MUSLE, USLE, WEPP, Fournier index, Yozgat

Abstract

The water erosion is a significant environmental issue in arid and semi-arid regions. It leads to soil degradation, reduced agricultural productivity, and desertification. This article used The WEPP, the USLE, and the MUSLE models to estimate the average soil loss in the Yozgat-Kadılı village. Also, The MUSLE model utilized the WEPP model-estimated runoff for soil loss estimation. The USLE model, which estimates soil erosion using six factors (R, K, L, S, P, and C), can be improved by incorporating the Modified Fournier Index (MFI). Results indicated that the MUSLE model (3.66 t/ha) performed well in estimating soil losses close to the observed value (3.15) in the wheat fields between 1986-1996. the MUSLE (5.31 t/ha) and WEPP (5.88 t/ha) models underestimated soil losses to the observed value (8.75 t/ha) in the fallow field for 1986-1996. The WEPP model estimated the highest average soil loss at 5.18 t/ha in a wheat field, while the USLE model yielded the lowest estimate at 1.28 t/ha between 1969 and 2020. The MUSLE model estimated the highest (4.94 t/ha) and The USLE model estimated the lowest (2.53 t/ha) soil loss in the fallow field between 1969-2020. Results also revealed that the WEPP model is needed to calibrate for estimating soil loss in arid and semi-arid regions.

References

Al-Ani, I. A., & Ola, A. H. (2019). Application of USLE and MUSLE models for the assessment of soil loss and sediment yield in Kuala Kari, Kelantan. International Conference on Engineering and Advanced Technology (ICEAT).

Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges, and limitations of soil erosion modeling. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2019.05.004

Asokan, K. (1981). Runoff and sediment yield from Bino subwatershed of Ramganga Catchment (M-Tech thesis). Govind Ballabh Pant University of Agriculture and Technology, Pantnagar.

Babalık, A.A., Dursun, İ, Yazıcı, N., (2021). Türkiye’de erozyon sorunu ve erozyon tahmininde kullanılan modeller. In: Cengizler İ, Duman S (eds) Ziraat, Orman ve Su Ürünlerinde Araştırma ve Değerlendirmeler – 1. Ankara, Gece Publishing, pp 182–205

Bagarello, V., Ferro, V., & Pampalone, V. (2014). Testing assumptions and procedures to empirically predict bare plot soil loss in a Mediterranean environment. Hydrological Processes. https://doi.org/10.1002/hyp.10382

Banasik, K., & Walling, D. E. (1996). Predicting sediment graphs for a small agricultural catchment. Nordic Hydrology, 27, 275–294.

Berberoglu, S., Cilek, A., Kirkby, M., Irvine, B., Donmez, C. (2020). Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the paneuropean soil erosion risk assessment (PESERA) model. Environmental Monitoring and Assessment, 192(8), 491.

Blanco-Canqui, H., & Lal, R. (2008). Principles of soil conservation and management. Springer, Dordrecht, The Ohio State University, Columbus, OH, USA, ISBN: 978-1-4020-8708-0, 129.

Brooks, E. S., Dobre, M., Elliot, W. J., Wu, J. Q., & Boll, J. (2016). Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin. Journal of Hydrology, 533, 389-402.

Cambazoglu, M. K., & Gogos, M. (2004). Sediment yields of basins in the Western Black Sea region of Turkey. Turkish Journal of Engineering Environmental Science, 28, 355–367.

ÇMTUEP. (2005). National Action Program to Combat Desertification, National Coordination Unit for Combating Desertification. Ministry of Environment and Forestry Publications, No: 250, Ankara, 124.Das, G. (1982). Runoff and sediment yield from Upper Ramganga Catchment (Ph.D. dissertation). Govind Ballabh Pant University of Agriculture and Technology, Pantnagar.

Demir, S., & Oğuz, İ. (2019). Validation of The Weather Generator CLIGEN with Season Precipitation Data in Tokat Province. Turkish Journal of Agriculture - Food Science and Technology, 7(10), 1589-1596. https://doi.org/10.24925/turjaf.v7i10.1589-1596.2633.

Demir, S., Oğuz, İ., & Ciba, Ö. F. (2018). Long Years Precipitation Parameters by CLIGEN Precipitation Model in Tokat Province. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 319-328.

Demir, S., Oğuz, İ., & Özer, E. (2018). Estimation of soil losses in a slope area of Tokat Province through USLE and WEPP model. Turkish Journal of Agriculture - Food Science and Technology, 6(12), 1838-1843.

Demir, S., Oğuz, İ., Ciba, Ö. F., & Özer, E. (2017). Farklı Arazi Kullanımı Altında Meydana Gelen Toprak ve Yüzey Akış Kayıplarının Wepp Hillslope Modeli Kullanılarak Tahmin Edilmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 34(Ek Sayı), 97-104. https://doi.org/10.13002/jafag4411

Demir, S., & Dursun, İ. (2024). Assessment of pre-and post-fire erosion using the RUSLE equation in a watershed affected by the forest fire on Google Earth Engine: the study of Manavgat River Basin. Natural Hazards, 120(3), 2499-2527.

Di Stefano, C., Ferro, V., Palmeri, V., & Pampalone, V. (2017). Measuring rill erosion using structure from motion: A plot experiment. Catena, 156, 383-392. https://doi.org/10.1016/j.catena.2017.04.023

Djoukbala, O., Hasbaia, M., Benselama, O., & Mazour, M. (2019). Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (N-W of Algeria). Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0562-6

Dursun, İ., & Babalık, A.A., (2023a). Evaluation of morphometric parameters and erosion status in Burdur Lake Watershed. Turk J for 24(1):25–38. https://doi.org/10.18182/tjf.1205157

Dursun, İ. &Babalık, A.(2023b). Burdur Gölü Havzasına Ait Bir Alt Havzada GeoWEPP ve Geotekstil Yöntemi Kullanılarak Erozyon Durumunun Belirlenmesi, Tarım, Orman ve Su Bilimlerinde İleri Ve Çağdaş Çalışmalar, Publisher: Duvar Yayınları.

Dutta, S. (2016). Soil erosion, sediment yield and sedimentation of reservoir: a review. Model. Earth Syst. Environ. 2, 123. https://doi.org/10.1007/s40808-016-0182-y

Ege, İ. (2019). The determination of the erosion effect on the Geomorphological characteristics and formation of kula (Kula/Manisa) fairy chimneys by RUSLE method, International Journal of Social Science, Number: 74, p. 455-479.

Elliot, W. J., & Flanagan, D. C. (2023). Estimating WEPP cropland erodibility values from soil properties. Journal of the ASABE, 66(2), 329-351.

Elliot, W. J., Foltz, R. B., & Luce, C. H. (1995). Validation of Water Erosion Prediction Project (WEPP) Model for Low-Volume Forest Roads. Proceedings of the Sixth International Conference on Low-Volume Roads, Minneapolis, Minnesota. USDA Forest Service.

Erdoğan Yüksel, E., Özalp, M., & Yıldırımer, S. (2019). Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin. Kastamonu University Journal of Forestry Faculty, 19(3), 290-298. https://doi.org/10.17475/kastorman.662495

Erskine, W. D., Mahmoudzadeh, A., & Myers, C. (2002). Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena, 49, 271–287.

Erkal, T., Yıldırım, Ü., 2012. Soil erosion risk assessment in the Sincanlı Sub-watershed of the Akarçay Basin (Afyonkarahisar, Turkey) using the Universal Soil Loss Equation (USLE). Ekoloji, 21(84), 18-29.

Flanagan, D.C., Frankenberger, J.R., Ascough II, J.C. (2018). WEPP: Water Erosion Prediction Project - Future perspectives in erosion prediction. Transactions of the ASABE, 61(2), 429-444.

Flanagan, D. C., & Livingston, S. J. (1995). WEPP User Summary. USDA-ARS National Soil Erosion Research Laboratory.

Flanagan, D. C., & Nearing, M. A. (1995). USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation,NSERL Report.

Foglia, L., Hill, M. C., Mehl, S. W., & Burlando, P. (2009). Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resources Research, 45(6), Article W06427. https://doi.org/10.1029/2008WR007255

Fontes, J. C., Pereira, L. S., & Pires, V. (2004). Runoff and erosion in volcanic soils of Azores: Simulation with OPUS. Catena, 56, 199–212.

Ghosh, K., De, S. K., Bandyopadhyay, S., & Saha, S. (2013). Assessment of soil loss of the Dhalai river basin, Tripura, India using USLE. International Journal of Geosciences, 4, 11–23.

Han, F., Ren, L., Zhang, X., & Li, Z. (2016). The WEPP model application in a small watershed in the Loess Plateau. PLOS ONE, 11(3), e0148445.

Jemai, S., Kallel, A., Agoubi, B., & Abida, H. (2021). Soil erosion estimation in arid area by USLE model applying GIS and RS: Case of Oued El Hamma Catchment, South-Eastern Tunisia. Journal of the Indian Society of Remote Sensing, 49, 1-13. https://doi.org/10.1007/s12524-021-01320-x

Johnson, C. W., Gordon, N. D. and C. L Hanson. Northwest rangeland sediment yield analysis by the MUSLE. Transactions of the ASAE, Nov-Dec,1985, v 28, n 6, p 1889-1895.

Kandrika, S., & Dwivedi, R. S. (2003). Assessment of the impact of mining on agricultural land using erosion–deposition model and space-borne multispectral data. Journal of Spatial Hydrology, 3, 6–22.

Kandrika, S., & Venkataratnam, L. (2005). A spatially distributed event-based model to predict sediment yield. Journal of Spatial Hydrology, 5(1), 1–19.

Khajehie, A., & Javidan, M. (2002). Study of application capabilities of MUSLE model for storm-wise and annual sediment yield prediction in Shahrchai watershed. Arak: Soil Conservation and Watershed Management Research Centre/Jihad-e-Agriculture Organization of Markazi Province/Natural Resources and Livestock Research Centre of Markazi Province, 436–446.

Khaledi Darvishan, A. V., Javidan, M., & Karami, M. (2009). Comparison of efficacy and calibration of MUSLE-E and MUSLE-S models in storm-wise sediment estimation. In The 5th National Conference on Watershed Management. Gorgan, Iran.

Kinnell, P. I. A. (2020). Erosion by water: Erosivity and erodibility. In Managing Soils and Terrestrial Systems (2nd ed., pp. 15-36).

Kinnell, P. I. A. (2003). Event erosivity factor and errors in erosion prediction by some empirical models. Australian Journal of Soil Research, 41. https://doi.org/10.1071/SR02123

Kinnell, P. I. A., & Risse, L. M. (1998). USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration. American Soil Science Society Journal, 62, 1662–1672.

Lal, R. (2017). Soil Erosion Research Methods. https://doi.org/10.1201/9780203739358

LaRocque, L. A., Mohamed, E., Chaudhry, M. H., & Imran, J. (2013). Experiments on urban flooding caused by a levee breach. Journal of Hydraulic Engineering, 139(9), 960-973.

Lopez-Tarazon, J. A., Batalla, R. J., Vericat, D., & Francke, T. (2012). The sediment budget of a highly dynamic mesoscale catchment: The River Isabena. Geomorphology, 138(1), 15–28.

McGehee, R. P., Flanagan, D. C., & Srivastava, P. (2020). WEPPCLIFF: A command-line tool to process climate inputs for soil loss models. Journal of Open Source Software, 5(49), 2029.

Meteoblue. (2023). Retrieved January 3, 2020, from http://www.meteoblue.com

Mohammed, S., Mais, H., Karam, A., Mokhtar, A., Rianna, G., Kbibo, I., Barkat, M., Talukdar, S., Szabó, S., & Harsanyi, E. (2021). Assessing the WEPP model performance for predicting daily runoff in three terrestrial ecosystems in western Syria. Heliyon, 7(4), e06675.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153

Nearing, M. A. (1998). Why soil erosion models over-predict small soil losses and under-predict large soil losses. Catena, 32(1), 15-22.

Nearing, Mark & Deer-Ascough, L. & Laflen, J.M.. (1990). Sensitivity Analysis of the WEPP Hillslope Profile Erosion Model.

Nicks, A. D., Laflen, J. M., & Elliot, W. J. (1995). WEPP: Water Erosion Prediction Project. USDA-ARS National Soil Erosion Research Laboratory.

Nicks, A. D., Elliot, W. J., & Laflen, J. M. (1994). Estimating soil erosion with models having different technologies. In Proceedings of the 25th Annual Conference on International Erosion Control Association (pp. 51–61). Reno, NV.

Özşahin, E. 2023. Climate change effect on soil erosion using different erosion models: A case study in the Naip Dam basin, Türkiye, Computers and Electronics in Agriculture,Volume 207,107711, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2023.107711.

Ran, Qihua, Feng Wang, and Jihui Gao. (2019). Modelling effects of rainfall patterns on runoff generation and soil erosion processes on slopes. Water 11, no. 11: 2221. https://doi.org/10.3390/w11112221

Revuelta-Acosta, J. D., Flanagan, D. C., Engel, B. A., & King, K. W. (2021). Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge. Agricultural Water Management, 244, 106597. https://doi.org/10.1016/j.agwat.2020.106597

Rezaiifard, M., Gholami, V., & Asadi, H. (2002). Study of MUSLE model application in storm-wise sediment prediction in Afcheh subwatershed. Arak: Soil Conservation and Watershed Management Research Centre/Jihad-e-Agriculture Organization of Markazi Province/Natural Resources and Livestock Research Centre of Markazi Province, 534–542.

Risse, L. M., Nearing, M. A., & Savabi, M. R. (1994). Determining the Green-Ampt effective hydraulic conductivity from rainfall-runoff data for the WEPP Model. Transactions of the ASAE, 37(2), 411–418.

Sadeghi, S. H. R. (2004). Comparison of some methods to estimate rainfall erosivity. Journal of Agricultural Sciences and Industries, 19(1), 45–52.

Sadeghi, S. H. R., Mizuyama, T., & Ghaderi, V. B. (2007a). Conformity of MUSLE estimates and erosion plot data for storm-wise sediment yield estimation. Journal of Terrestrial, Atmospheric and Oceanic Sciences, 18(1), 117–128.

Sadeghi, S. H. R., Mizuyama, T., Ghaderi, V. B., & Miyata, S. (2007b). Is MUSLE applicable to small steeply reforested watersheds? Journal of Forest Research, 12, 270–277.

Sadeghi, S. H. R., Ghaderi, V. B., & Mizuyama, T. (2008). Comparison of sediment delivery ratio estimation methods in Chehelgazi watershed of Gheshlagh Dam. Journal of Agricultural Sciences and Industries, 22(1), 141–150.

Sarkhosh, A., Ghaderi, V. B., & Mizuyama, T. (2004). Comparison and evaluation of MUSLE and MPSIAC models for sediment yield prediction in Darakeh watershed in Northern Tehran. Journal of Agricultural Sciences and Industries, 34(3), 733–747.

Spadaro, G., Flanagan, D.C., Cosentino, S.L., & Mantineo, M. (2018). Estimation of soil erosion using the WEPP model for Mediterranean conditions. Journal of Soil and Water Conservation, 73(1), 1-10.

Srivastava, A., Flanagan, D. C., Frankenberger, J. R., & Engel, B. A. (2019). Updated climate database and impacts on WEPP model predictions. Journal of Soil and Water Conservation, 74(4), 334–349. https://doi.org/10.2489/jswc.74.4.334

Tiwari, A. K., Risse, L. M., & Nearing, M. A. (2000). Evaluation of WEPP and its comparison with USLE and RUSLE. Transactions of the ASAE, 43(5), 1129–1135.

Uslu, S., Oğuz, İ., & Demir, S. (2022). Tokat-Almus Yöresinde Farklı Arazi Kullanım Türlerinde Yüzey Akış ve Toprak Kayıplarının Karşılaştırılması. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 11(3), 39-53.

Varvani, J., Sadeghi, S. H. R., & Mizuyama, T. (2006). Assessment of the experimental models performance in watershed sediment in time to single flood and provide modification coefficients. Journal of Natural Resources, 60(4), 1125–1239.

Williams, J. R. (1975). Sediment-yield prediction with Universal Equation using runoff energy factor, present and prospective technology for predicting sediment yield and sources. ARS-S-40. Brooksville, FL: US Department of Agriculture, Agricultural Research Service, 244–252.

Williams, J. R., & Berndt, H. D. (1977). Sediment yield prediction based on watershed hydrology. Transactions of the ASAE, 20(6), 1100–1104.

Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation (Vol. 282). Agricultural Research Service, US Department of Agriculture.

Mohammed, S., Kbibo, I., Alshihabi, O., & Mahfoud, E. (2016). Studying rainfall changes and water erosion of soil by using the WEPP model in Lattakia, Syria. Journal of Agricultural Sciences, 61(4), 375-386.

Yozgat ve Çevre Şehircilik İl Müdürlüğü. (2020). Yozgat ili 2019 yılı çevre durum raporu.

Zheng, F., Zhang, X.-C. (John), Wang, J., & Flanagan, D. C. (2020). Assessing applicability of the WEPP hillslope model to steep landscapes in the northern Loess Plateau of China. Soil and Tillage Research, 197, 104492. https://doi.org/10.1016/j.still.2019.104492

Zhang, X. C., Nearing, M. A., Risse, L. M., & McGregor, K. C. (1996). Evaluation of WEPP runoff and soil loss predictions using natural runoff plot data. Transactions of the ASAE, 39(3), 855-863.

Zhang, Y., Nearing, M. A., Risse, L. M., & McGregor, K. C. (2009). Integration of Modified Universal Soil Loss Equation (MUSLE) into a GIS framework to assess soil erosion risk. Journal of Land Degradation and Development, 20, 84–91.

Downloads

Published

15.10.2024

How to Cite

Demir, S., Şimşek, H., & Kaya, Y. (2024). Evaluation of WEPP and Its Comparison with USLE and MUSLE in Yozgat-Kadılı Village . Turkish Journal of Agriculture - Food Science and Technology, 12(10), 1684–1695. https://doi.org/10.24925/turjaf.v12i10.1684-1695.6895

Issue

Section

Research Paper