Comparison of Some Parts of Cotoneaster coriaceus Franch. Plant in Terms of Phytochemicals and Antioxidant Capacity

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i10.1817-1825.7003

Keywords:

Cotoneaster coriaceus Franch., phytochemicals, antioxidant capacity, minerals, PCA, HCA

Abstract

Cotoneaster spp. is a plant belonging to the Rosaceae family, which includes different genera and taxa. It is a woody plant that grows from shrubs to trees depending on its height (between 0.2-20 m) and grows in the temperate areas of Europe, North Africa and Asia. Many Cotoneaster species have become highly popular ornamental plants due to their striking leaves, dense flowers, and bright red-black fruits. These species have been used traditionally for the treatment of numerous diseases due to their rich bioactive components present in both their above-ground and below-ground parts. This study investigates the phytochemical and antioxidant properties of the above-ground parts of Cotoneaster coriaceus Franch., including its fruits, stems, and leaves. For this purpose, total phenolic content (TPC) and DPPH radical scavenging activity, organic acid and sugar profile, and mineral distributions were determined. According to the results, the highest amounts of macro-minerals identified were potassium (K) and calcium (Ca), while iron (Fe) and boron (B) were the predominant micro-minerals. The dominant organic acid in the fruit was malic acid, while succinic acid was prevalent in the stems and leaves. Sucrose and fructose, the sugars detected in the fruit, were found in equal levels in the stems and leaves. Fructose was identified as the dominant sugar in the leaves. It was determined that the fruit, stem, and leave parts of the Cotoneaster coriaceus Franch. plant species were rich in TPC, with the stems exhibiting higher antioxidant capacity.

References

Akbulut, H. F., Almaghrebi, E., Obali, I., Vatansev, H., Vatansev, H., & Akbulut, M. (2024). Evaluation the organic acid, tocopherol and phenolic profiles of Dracaena cinnabari resin extracts obtained by different solvent extraction. Latin American Applied Research-An international journal, 54(2), 195-200. https://doi.org/10.52292/j.laar.2024.2865

Akbulut, H.F. & Akbulut, M. (2023). Mineral composition, the profile of phenolic compounds, organic acids, sugar and in vitro antioxidant capacity, and antimicrobial activity of organic extracts of Juniperus drupacea fruits. Food Science & Nutrition, 11, 6435–6446. https://doi.org/10.1002/fsn3.3586

Ali, A., Badshah, L., & Hussain, F. (2018). Screening of five plant species for macro/micro nutrients and heavy metals at various phenological stages. Pakistan Journal of Botany, 50(5), 1941-1949.

Ali, M., Ullah, H., Bari, W. U., Ul Islam, N., Zahoor, M., Ullah, R., & Bari, A. (2021). Phytochemical isolation and biological screening of Cotoneaster microphyllus. International Journal of Food Properties, 24(1), 1318-1334. https://doi.org/10.1080/10942912.2021.1963770

Alwazeer, D., & Sally, D. H. A. M. (2019). Presumptive relationship between oxidoreduction potential and both antibacterial and antioxidant activities of herbs and spices: Oxidoreduction potential as a companion tool for measuring the antioxidant activity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 506-514. https://doi.org/10.15835/nbha47111301

Bartish, I. V., Hylmö, B., & Nybom, H. (2001). RAPD analysis of interspecific relationships in presumably apomictic Cotoneaster species. Euphytica, 120, 273-280. https://doi.org/10.1023/A:1017585600386

Binici, H. İ., Şat, İ. G., & Yilmaz, B. (2024). Comparison of antioxidant, phenolic profile, melatonin, and volatile compounds of some selected plant samples. Food Science & Nutrition, 00, 1–8. https://doi.org/10.1002/fsn3.4334

Boland, G.M., & Donnelly, D.M. (1998). Isoflavonoid sand related compounds. Natural Product Reports, 15(3), 241–260. https://doi.org/10.1039/a815241y

Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Cao, S., Zheng, Y., Yang, Z., Wanga, K., & Ruia, H. (2009). Effect of methyl jasmonate on quality and antioxidant activity of postharvest loquat fruit. Journal of the Science of Food and Agriculture, 89, 2064-2070. https://doi.org/10.1002/jsfa.3691

Chen, F.X., Liu, X.H., & Chen, L.S. (2008). Organic acid composition in the pulp of loquat (Eriobotrya japonica Lindl) and distribution in fruits. Journal of Tropical and Subtropical Botany. 16, 189-196.

Chen, F.X., Liu, X.H., & Chen, L.S. (2009). Developmental changes in pulp organic acid concentration and activities of acid-metabolizing enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry, 114, 657-664. https://doi.org/10.1016/j.foodchem.2008.10.003

Choi, H.J., Kim, J.H., Lee, C.H., Ahn, Y.J., Song, J.H., Baek, S.H., & Kwon, D.H. (2009). Antiviralactivity of quercetin7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Research, 81(1), 77–81. https://doi.org/10.1016/j.antiviral.2008.10.002

Coklar, H., Akbulut, M., Alhassan, I., Kirpitci, S., & Korkmaz, E. (2018). Organic acids, sugars, phenolic compounds and antioxidant activity of Malus floribunda coccinella fruit, peel and flesh. Acta Scientiarum Polonorum. Hortorum Cultus, 17(5), 47-59, https://doi.org/10.24326/asphc.2018.5.5

Devirian, T.A., & Volpe, S.L. (2003). The physiological effects of dietary boron. Critical Reviews in Food Science and Nutrition, 43: 219–231, https://doi.org/10.1080/10408690390826491

Dmitruk, M., Strzałkowska-Abramek, M., Bożek, M., & Denisow, B. (2022). Plants enhancing urban pollinators: Nectar rather than pollen attracts pollinators of Cotoneaster species. Urban Forestry & Urban Greening, 74, 127651.

El-Mousallamy, A.M., Hussein, S.A., Merfort, I., & Nawwar, M.A. (2000). Unusual phenolic glycosides from Cotoneaster orbicularis. Phytochemistry, 53(6), 699–704. https://doi.org/10.1016/S0031-9422(99)00598-1

Gupta, A.K., Rather, M.A., Kumar Jha, A., Shashank, A., Singhal, S., Sharma, M., Pathak, U., Sharma, D., & Mastinu, A. (2020). Artocarpus lakoocha Roxb and Artocarpus heterophyllus Lam. flowers: New sources of bioactive compounds. Plants, 9(10), 1329. https://doi.org/10.3390/plants9101329

Hasegawa, P.N., Faria, A.F., Mercadante, A.Z., Chagas, E.A., Pio, R., Lajolo, F.M., Cordenunsi, B.R., & Purgatto, E. (2010). Chemical composition of five loquat cultivars planted in Brazil. Ciência e Tecnologia de Alimentos, 30(2), 552-559. https://doi.org/10.1590/S0101-20612010000200040

Holzer, V. M., Lower-Nedza, A. D., Nandintsetseg, M., Batkhuu, J., & Brantner, A. H. (2013). Antioxidant constituents of Cotoneaster melanocarpus Lodd. Antioxidants, 2(4), 265-272. https://doi.org/10.1016/j.ufug.2022.127651

Hürkul, M. M., & Köroğlu, A. (2021). Comparative morphological characteristics of some cotoneaster Medik. (rosaceae) species native to Turkey (In Turkish). Journal of Faculty of Pharmacy of Ankara University, 45(1), 12-33. https://doi.org/10.33483/jfpau.819798

Kahve, H. I., Coklar, H., Akbulut, M. (2024). The effect of different drying techniques on some bioactive compounds and antibacterial properties of Polygonum sivasicum. Latin American Applied Research, 54(1): 39-44. https://doi.org/10.52292/j.laar.2024.1968

Khan, S., Aziz-Ur-Rehman, R.N., Afza, N., & Malik, A. (2007). Isolation studies on Cotoneaster racemiflora. Journal of the Chemical Society of Pakistan, 29(6), 620–623.

Khan, M. N., Ullah, B., Kaplan, A., Wahab, S., Ali, B., Al Obaid, S., & Ansari, M. J. (2024). An in-depth investigation of the nutraceutical value and medicinal perspectives of wild medicinal plants in Ojhor Valley, Hindukush Range, Chitral, Pakistan. Genetic Resources and Crop Evolution, 1-29. https://doi.org/10.1007/s10722-024-01996-3

Khayam, S.M.U., Zahoor, M., & Shah, A.B. (2019). Biological and phytochemical evaluation of Cotoneaster microphyllus, Ficus auriculata and Calotropis procera. Latin American Journal of Pharmacy, 85(5), 945–953.

Kicel, A., Kolodziejczyk-Czepas, J., Owczarek, A., Rutkowska, M., Wajs-Bonikowska, A., Granica, S., Nowak, P., & Olszewska, M. A. (2018). Multifunctional Phytocompounds in Cotoneaster Fruits: Phytochemical Profiling, Cellular Safety, Anti‐Inflammatory and Antioxidant Effects in Chemical and Human Plasma Models In Vitro. Oxidative Medicine and Cellular Longevity, 2018(1), 3482521. https://doi.org/10.1155/2018/3482521

Kicel, A., Michel, P., Owczarek, A., Marchelak, A., Żyżelewicz, D., Budryn, G., Oracz, J., & Olszewska, M. A. (2016). Phenolic profile and antioxidant potential of leaves from selected Cotoneaster Medik. species. Molecules, 21(6), 688. https://doi.org/10.3390/molecules21060688

Kicel, A., Owczarek, A., Gralak, P., Ciszewski, P., & Olszewska, M. A. (2019). Polyphenolic profile, antioxidant activity, and pro-inflammatory enzymes inhibition of leaves, flowers, bark and fruits of Cotoneaster integerrimus: A comparative study. Phytochemistry Letters, 30, 349-355. https://doi.org/10.1016/j.phytol.2019.02.027

Krzemińska, B., Dybowski, M. P., Klimek, K., Typek, R., Miazga-Karska, M., & Dos Santos Szewczyk, K. (2022). The anti-acne potential and chemical composition of two cultivated Cotoneaster species. Cells, 11(3), 367. https://doi.org/10.3390/cells11030367

Les, F., López, V., Caprioli, G., Iannarelli, R., Fiorini, D., Innocenti, M., ... & Maggi, F. (2017). Chemical constituents, radical scavenging activity and enzyme inhibitory capacity of fruits from Cotoneaster pannosus Franch. Food & Function, 8(5), 1775-1784. https://doi.org/1775-1784. 10.1039/c7fo00330g

Mann, J. (2000). Murder, Magic, and Medicine. Oxford University Press. Oxford. pp. 232

McLaughlin, M.M.J., Parker, D.R., & Clarke, J.M. (1999). Metals and micronutrients-food safety issues. Field Crops Research, 60, 143– 163. https://doi.org/10.1016/S0378-4290(98)00137-3

Özcan, M.M., & Akbulut, M. (2008). Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chemistry, 106, 852–858. https://doi.org/10.1016/j.foodchem.2007.06.045

Palme, E., Bilia, A.R., & Morelli, I. (1996). Flavones and isoflavones from Cotoneaster simonsii. Phytochemistry, 42(3), 903–905. https://doi.org/10.1016/0031-9422(95)00023-2

Perkins-Veazie, P., & Collins, J.K. (2001). Contributions of nonvolatile phytochemicals to nutrition and flavor. HortTechnology, 11, 539– 546. https://doi.org/10.21273/HORTTECH.11.4.539

Pimm, S.L., & Joppa, L.N. (2015). How many plant species are there, where are they, and at what rate are they going extinct? Annals of the Missouri Botanical Garden, 100(3), 170–176. https://doi.org/10.3417/2012018

Popoviciu, D.R., Negreanu-Pirjol, T., Motelica, L., Pirjol, B.S.N., & Carotenoids, F. (2020). Total phenolic compoundsand antioxidant activity of two creeping Cotoneaster species fruits extracts. Journal of Pharmaceutical Sciences and Research, 71(3), 136–142. https://doi.org/10.37358/RC.20.3.7981

Prasad, K., Janve, B., Sharma, R. K., & Prasad, K. K. (2010). Compositional characterization of traditional medicinal plants: Chemo-metric approach. Archives of Applied Science Research, 2(5), 1-10.

Ramdath, D. D., Lu, Z. H., Maharaj, P. L., Winberg, J., Brummer, Y., & Hawke, A. (2020). Proximate analysis and nutritional evaluation of twenty Canadian lentils by principal component and cluster analyses. Foods, 9(2), 175. https://doi.org/10.3390/foods9020175

Saxena, R.K., Saran, S., Isar, J., & Kaushik, R. (2017). Production and applications of succinic acid. In Current developments in biotechnology and bioengineering (pp. 601-630). Elsevier.

Senhaji, S., Lamchouri, F., & Toufik, H. (2020). Phytochemical content, antibacterial and antioxidant potential of endemic plant anabasis aretioïdes coss. & moq. (Chenopodiaceae). BioMed Research International, 2020, 6152932. https://doi.org/10.1155/2020/6152932

Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144

Skotti, E., Anastasaki, E., Kanellou, G., Polissiou, M., & Tarantilis, P. A. (2014). Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Industrial Crops and Products, 53, 46-54. https://doi.org/10.1016/j.indcrop.2013.12.013

Skujins, S. (1998). Handbook for ICP-AES (varian-vista). A short guide to vista series ICP-AES operation. Varian Int. AG, Zug, Version, 1-0.

Sokkar, N., El-Gindi, O., Sayed, S., Mohamed, S., Ali, Z., & Alfishawy, I. (2013). Antioxidant, anticancer and hepatoprotective activities of Cotoneaster horizontalis Decne extract as well as α-tocopherol and amygdalin production from in vitro culture. Acta physiologiae plantarum, 35, 2421-2428. https://doi.org/10.1007/s11738-013-1276-z

Swati, S., Manjula, R. R., Sowjanya, K., Vennela, Y., & Tanuja, K. (2018). A phyto pharmacological review on Cotoneaster microphyllus species. Journal of Pharmaceutical Sciences and Research, 10(9), 2166-2168.

Toker, R., Gölükcü, M., Tokgöz, H., & Tepe, S. (2013). Organic acids and sugar compositions of some loquat cultivars (Eriobotrya japonica L.) grown in Turkey. Journal of Agricultural Sciences, 19(2): 121-128, https://doi.org/10.1501/Tarimbil_0000001236

Uysal, A., Zengin, G., Mollica, A., Gunes, E., Locatelli, M., Yilmaz, T., & Aktumsek, A. (2016). Chemical and biological insights on Cotoneaster integerrimus: A new (-)-epicatechin source for food and medicinal applications. Phytomedicine, 23(10), 979-988. https://doi.org/10.1016/j.phymed.2016.06.011

Vaghela, S.S., Jethva, A.D., & Gohil, M.S. (2002). Cyclic voltametric and galvanostatic electrolysis studies on the reduction of maleic acid in buffered and unbuffered solutions. Bulletin of Electrochemistry, 18(5), 237-240.

Xu, H., Chen, J., & Xie, M. (2010). Effect of different light transmittance paper bags on fruit quality and antioxidant capacity in loquat. Journal of the Science of Food and Agriculture, 90, 1783-1788, https://doi.org/10.1002/jsfa.4012

Zengin, G., Uysal, A., Gunes, E., & Aktumsek, A. (2014). Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): A potential source for functional food ingredients and drug formulations. PloS one, 9(11), e113527. https://doi.org/10.1371/journal.pone.0113527

Downloads

Published

15.10.2024

How to Cite

Akbulut, H. F. (2024). Comparison of Some Parts of Cotoneaster coriaceus Franch. Plant in Terms of Phytochemicals and Antioxidant Capacity. Turkish Journal of Agriculture - Food Science and Technology, 12(10), 1817–1825. https://doi.org/10.24925/turjaf.v12i10.1817-1825.7003

Issue

Section

Research Paper