Combining Pasture- and Animal-Based Factors to Predict Herbage or Dry Matter Intake of Lambs Grazing on Cocksfoot, Meadow Fescue and Tall Fescue Pastures
DOI:
https://doi.org/10.24925/turjaf.v12i12.2624-2630.7097Keywords:
Cocksfoot, Dry matter intake, Grazing, Meadow fescue, Tall fescueAbstract
In this study, it was aimed to establish the correlations between actual dry matter intake (DMI) and some animal (body weight, (BW)) and pasture (crude protein (CP); neutral detergent fiber (NDF); in vitro dry matter digestibility (IVDMD); dry matter yield (DMY); herbage allowance (HA); herbage mass (HM); metabolizable energy (ME); relative forage quality (RFQ); total digestible nutrients (TDN)) based factors to formulate precise regression equations for DMI prediction. For this purpose, data (n = 36, 2 years × 3 blocks × 6 data collection) were utilized for two grazing seasons (2020–2021) on cocksfoot (Dactylis glomerata), meadow fescue (Festuca pratensis) and tall fescue (Festuca arundinacea) mixed pastures with Karayaka male lambs at an average age of 2 months for 60 days in each season. Positive correlations were determined between DMI and BW (0.777), HA (0.814), DMY (0.844), and NDF (0.609), while DMI had negative correlations with IVDMD (-0.738), RFQ (-0.357), CP (-0.209), TDN (-0.177) and ME (-0.039). In addition, animal and pasture–based factors were evaluated by principal component analysis to determine the in–cooperating variables in variance. As a result, equations were developed by using parameters with high correlation coefficient and the best–fit 3 equations for predicting DMI of lambs grazing cocksfoot, meadow fescue and tall fescue pastures: (I) -1224.09 + 39.90BW (kg) + 33.69HA (kg DM/ kg BW) + 8.22NDF (% of DM), r2=0.815, II) -701.47 + 18.96BW (kg) + 673.61DMY (kg/ per square meters) + 8.19NDF (% of DM), r2=0.807, III) -325.32 + 43.49HA (kg DM/kg BW)-2.21IVDMD (%) + 8.57NDF (%), r2=0.786).
References
Akdağ, A., & Ocak, N. (2019). Herbage Intake Determination Methods of Grazing Animals. Scientific Papers: Animal Science and Biotechnologies, 52 (1).
AOAC International. 2005. Official Method of Analysis of AOAC International, 18th ed.; AOAC Int.: Gaithersburg, MD, USA.
Atalay, H., & Kahriman, F. (2020). Estimation of relative feed value, relative forage quality and net energy lactation values of some roughage samples by using near infrared reflectance spectroscopy. Journal of Istanbul Veterinary Sciences, 3, 109-118. https://doi.org/10.30704/http-www-jivs-net.791669
Aydin, I., & Ocak, N. (2022). The Nutritional Dynamics of Common Weeds in the Rangelands of the Akdağ Mountains, Samsun. Black Sea Journal of Agriculture, 5(3), 240-247. https://doi.org/0.47115/bsagriculture.1081932
Belyea, R. L., Steevens, B., Garner, G., Whittier, J. C., & Sewell, H. (1993). “Using NDF and ADF to balance diets”. Agricultural publication, G. 3161.
Blümmel, M., Makkar, H. P. S., Chisanga, G., Mtimuni, J., & Becker. K. (1997). The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant live weight gain. Animal Feed Science Technology, 69, 131-141. https://doi.org/10.1016/S0377-8401(97)81628-8
Burns, J. C., Pond, K. R., & Fisher, D. S. (1994). Measurement of forage intake. Forage quality, evaluation and utilization, pp. 494.
Cannas, A., Tedeschi, L. O. Fox, D. G., Pell, A. N., & Van Soest, P. J. (2004). A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. Journal Animal Science, 82, 149–169. https://doi.org/10.2527/2004.821149x
Chen, H., Xiong, F., Wu, Q., Wang, W., Cui, Z., Zhang, F……. Yang, H. (2023). Estimation of Energy Value and Digestibility and Prediction Equations for Sheep Fed with Diets Containing Leymus chinensis Hay. Agriculture, 13, 1213. https://doi.org/10.3390/agriculture13061213
Decruyenaere, V., Buldgen, A., & Stilmant, D. (2009). Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnology, Agronomy, Society and Environment, 13(4), 559-573.
Decruyenaere, V., Froidmont, E., Bartiaux-Thill, N., Buldgen, A., & Stilmant, D. (2012). Fecal near- infrared spectroscopy (NIRS) compared with other techniques estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science and Technology, 173, 220-234. https://doi.org/10.1016/j.anifeedsci.2012.02.005
Decruyenaere, V. (2015). Estimation of diet digestibility and intake by grazing ruminants through near infrared reflectance spectroscopy analysis of faeces. Application in various contexts of livestock production, 17- 21.
Galyean, M. L., & Gunter, S. A. (2016). Predicting forage intake in extensive grazing systems. Journal of Animal Science, 94, 26-43. https://doi.org/10.2527/jas.2016-0523
Harlan, D. W., Holter, J. B., & Hayes, H. H. (1991). Detergent fiber traits to predict productive energy of forages fed free choice to nonlactating dairy cattle. Journal of Dairy Science, 74, 1337–1353. https://doi.org/10.3168/jds.S0022-0302(91)78289-1
Herrero, M., Dent, J. B., & Fawcett, R. H. (1998). The plant/animal interface in models of grazing systems. Pages 495–542 in Agricultural Systems Modeling and Simulation. R. M. Peart and R. B. Curry, ed. Marcel Dekker Inc.
Hervás, G., Ranilla, M. J., Mantecón, Á. R., Bodas, R., & Frutos, P. (2004). Comparison of in vitro digestibility of feedstuffs using rumen inoculum from sheep or red deer. Journal of Animal and Feed Sciences, 13 (Suppl. 1), 91-94. https://doi.org/10.22358/jafs/73746/2004
Holter, J. B., West, J. W., McGilliard, M. L., & Pell, A. N. (1996). Predicting ad libitum dry matter intake and yields of Jersey cows. Journal of Dairy Science, 79, 912–921. https://doi.org/10.3168/jds.S0022-0302(96)76441-X
Institut National de la Recherche Agronomique. INRA feeding system for ruminants. Wageningen: Wageningen Academic Publishers; (2018).
Kertz, A. F., Reutzel, L. F., & Thomson, G. M. (1991). Dry matter intake from parturition to mid lactation. Journal of Dairy Science, 74, 2290–2295. https://doi.org/10.3168/jds.S0022-0302(91)78401-4
Macoon, B., Sollenberg, L. E., Moore, J. E., Staples, C. R., Fike, J. H., & Portier, K. M. (2003). Comparison of three techniques for estimating the forage intake of lactating dairy cows at pasture. Journal of Animal Science, 81, 2357-2366. https://doi.org/10.2527/2003.8192357x
Malossini, F., Bovolenta, S., Piasentier, E., Piras, C., & Martillotti, F. (1996). Comparison of n-alkanes and chromium oxide methods for estimating herbage intake by grazing dairy cows. Animal Feed Science Technology, 61, 155-165. https://doi.org/10.1016/0377-8401(96)00954-6
Meyer, K., Hummel, J., & Clauss, M. (2010). The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Review, 40, 221–245. https://doi.org/10.1111/j.1365-2907.2010.00161.x
Minson, D. J. (1990). Forage in Ruminant Nutrition. Academic Press. Inc., New York, NY.
Oliveira, A. P. d, Cunha, C. S., Pereira, E. S., Biffani, S., Medeiros, A. N. D., Silva, A. M. D. A., & Marcondes, M. I. (2020). ‘Meta-analysis of dry matter intake and neutral detergent fiber intake of hair sheep raised in tropical areas’. PLoS ONE 15(12), e0244201. https://doi.org/10.1371/journal.pone.0244201
Piasentier, E., Bovolenta, S., Malossini, F., & Susmel, P. (1995). Comparison of n-alkanes or chromium oxide methods for estimation of herbage intake by sheep. Small Ruminant Research, 18, 27-32. https://doi.org/10.1016/0921-4488(95)00712-T
Pollock, J. G., Gordon, A. W., Huson, K. M., & McConnell, D. A. (2022). The Effect of Frequency of Fresh Pasture Allocation on the Feeding Behaviour of High Production Dairy Cows. Animals, 12, 243. https://doi.org/10.3390/ani12030243
Pulina, G., Avondo, M., Molle, G., Francesconi, A. H. D., Atzori, A. S., & Cannas, A. 2013. Models for estimating feed intake in small ruminants. Revista Brasileira de Zootecnia, 42, 675-690. https://doi.org/10.1590/S1516-35982013000900010
Roca, F. A., & Gonzalez, R. A. (2013). Sward factors influence on pasture dry matter intake of grazing dairy cows: A Review. Iranian Journal of Applied Animal Science, 3(4), 629-651.
Roseler, D. K., Fox, D. G., Chase, L. E., Pell, A. N., & Stone, W. C. (1997). Development and evaluation of equations for the prediction of feed intake for lactating Holstein dairy cows. Journal of Dairy Science, 80, 878–893. https://doi.org/10.3168/jds.S0022-0302(97)76010-7
Smit, H. J., Taweel, H. Z., Tas, B. M., & Elgersma, A. (2005). Comparison of techniques for estimating herbage intake of grazing dairy cows. Journal of Dairy Science, 88, 1827-1836. https://doi.org/10.3168/jds.S0022-0302(05)72857-5
Sollenberger, L. E., Moore, J. E., Allen, V. G., & Pedreira, C. G. S. (2005). Reporting forage allowance in grazing experiments. Crop Science, 45, 896–900. https://doi.org/10.2135/cropsci2004.0216
Sollenberger, L. E., & Vanzant, E. S. (2011). Interrelationships among forage nutritive value and quantity and individual animal performance. Crop Science, 51(2), 420-432. https://doi.org/10.2135/cropsci2010.07.0408
Tharmaraj, J., Wales, W. J., Chapman, D. F., & Egan, A. R. (2003). Defoliation pattern, foraging behaviour and diet selection by lactating dairy cows in response to sward height and herbage allowance of a ryegrass‐dominated pasture. Grass and Forage Science, 58(3), 225-23. https://doi.org/10.1046/j.1365-2494.2003.00374.x
Undersander, D., (2003). The new Forage Quality Index-concepts and use, World’s Forage Superbowl Contest. http://www.dfrc.ars.usda.gov/WDExpoPdfs/new Relative FQ index.pdf
Undi, M., Wilson, C., Ominski, K. H., & Wittenberg, K. M. (2008). Comparison of techniques for estimation of forage dry matter intake by grazing beef cattle. Canadian Journal of Animal Science, 88, 693-701. https://doi.org/10.4141/CJAS08041
Van Soest, P. J. (1965). Symposium on factors influencing the voluntary intake of herbage by ruminants. Voluntary intake in relation to chemical composition and digestibility. Journal of Animal Science, 24, 834-843.
Woli, P., Long, C. R., Tedeschi, L. O., & Rouquette Jr F. M. (2023). Developing the herbage allowance-nutritive value based pasture factor for estimating daily herbage intake of stocker cattle grazing bermudagrass pasture. Applied Animal Science, 39, 264–272. https://doi.org/10.15232/aas.2023-02407
Xiao, X., Zhang, T., Angerer, J. P., & Hou, F. (2020). Grazing Seasons and Stocking Rates Affects the Relationship between Herbage Traits of Alpine Meadow and Grazing Behaviors of Tibetan Sheep in the Qinghai–Tibetan Plateau. Animals, 10, 488. https://doi.org/10.3390/ani10030488
Yang, Z., Wang, Y., Yuan, X., Wang, L., & Wang, D. (2017). Forage Intake and Weight Gain of Ewes Is Affected by Roughage Mixes during Winter in Northeastern China. Animal Science Journal, 88, 1058–1065. https://doi.org/10.1111/asj.12747
Yungblut, D. H., Stone, J. B., MacLeod, G. K., Grieve, D. G., & Burnside, E. B. (1981). The development of feed intake prediction equations for lactating dairy cows. Canadian Journal of Animal Science, 61, 151– 157. https://doi.org/10.4141/cjas81-020
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.