Effects of Different Zinc Concentrations on Culture Growth of Spirulina platensis and Its Production of Zinc Enriched as Superfood
DOI:
https://doi.org/10.24925/turjaf.v12i12.2615-2623.7098Keywords:
Culture, Spirulina platensis, Zn, Zinc content, Zinc deficiencyAbstract
With its high protein, vitamin and mineral content, Spirulina platensis (SP) is the most widely used microalgae as a food supplement and the most cultivated microalgae for this purpose. Zinc is a regulatory microelement that is incorporated into the structure of many proteins in the cell and is particularly deficient in cereal-based societies. Due to the high adaptability of SP to environments with high metal concentrations and its high capacity to secrete substances called phytochelatin and metal-binding capacity, in this study zinc-enriched SP (ZnSP) was produced by binding metals to SP by organic means. For this purpose, modified media with 4 different Zn concentrations were prepared and SP was cultured in these media. Optical density, chlorophyll-a, phycobiliprotein and dry cell weight analyses were performed to monitor the culture. During the culture period, biomass and filtered culture medium were collected from logarithmic and stationary stages and Zn analyses were performed. The most suitable culture medium and growth conditions were determined to obtain Zn-enriched SP. 338.4 mg kg-1 Zn was measured in SP biomass grown in Zn-3 medium containing 8 mg L-1 Zn. It may be possible to obtain Zn-enriched SP in this medium and under the specified culture conditions, and even this ratio can be increased by adding Zn to the culture medium after the logarithmic stage.
References
Arashiro, L. T., Boto-Ordóñez, M., Van Hulle, S.W.H., Ferrer, I., Garfí, M.,. Rousseau, D.P.L. (2020). Natural pigments from microalgae grown in industrial wastewater. Bioresource Technology, 303, 122894. https://doi.org/10.1016/j.biortech.2020.122894.
Carnicas, E., Jiménez, C., & Niell, F.X. (1999). Effects of changes of irradiance on the pigment composition of Gracilaria tenuistipitata var. liui Zhang et Xia. Journal of Photochemistry and Photobiology B: Biology, 50(2–3):149-158. https://doi.org/10.1016/S1011-1344(99)00086-X.
Chia, M. A., Lombardi, A. T., Melão, & M. da G. G. (2013). Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais Da Academia Brasileira de Ciencias, 85(4), 1427–1438.
Das, S., & Green, A. (2013). Importance of zinc in crops and human health. Journal of SAT Agricultural Research 11: 1-7. https://doi.org/10.1007/978-81-322-2716-8_3
Data Type:SR Legacy, Food Category, Vegetables and Vegetable Products, FDC ID:170495NDB Number:11667, FDC Published:4/1/2019. https://fdc.nal.usda.gov/fdc-app.html#/food-details/170495/nutrients
Ebid, W.M.A., Ali, G.S. & Elewa, N.A.H. (2022). Impact of Spirulina platensis on physicochemical, antioxidant, microbiological and sensory properties of functional labneh.Discov Foodn2, 29 https://doi.org/10.1007/s44187-022-00031-7
Ekemen C., Örnek Z., Karacı M., & Ekemen A. (2018). Okul Çağındaki Çocuklarda Demir, Çinko ve A Vitamini Eksikliği Prevalansının Değerlendirilmesi. Turkish Journal of Pediatric Disease. 2019; 3: 154-159. DOI: 10.12956/tjpd.2018.371
Faluweki, M. K. & Lucas, G. (2022). Structural mechanics of filamentous cyanobacteria. Journal of the Royal Society Interface, 19:0268. http://doi.org/10.1098/rsif.2022.0268
FAO. 2023. Technical guidelines on soils for nutrition – Sustainable soil management for nutrition-sensitive agriculture. Rome. https://doi.org/10.4060/cc5069en
Formigari, A., Irato, P., & Santon, A. (2007). Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(4), 443-459. https://doi.org/10.1016/j.cbpc.2007.07.010.
Ghafari, M., Rashidi, B., & Haznedaroglu, B. Z. (2016). Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels, 9(2), 147–156.https://doi.org/10.1080/17597269.2016.1221644
Godoy-Hernández, G. & Vázquez-Flota, F. A. (2012). Growth measurements: Estimation of cell division and cell expansion. In Methods in Molecular Biology, 877, 41–48.
Gupta, R.K., Gangoliya, S.S. & Singh, N.K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52, 676–684. https://doi.org/10.1007/s13197-013-0978-y
Güzelcan, M.S., & El, S.N. (2011). Simidin demir ve çinko mineralleriyle zenginleştirilmesi ve in vitro mineral biyoyararlılığının saptanması. Gıda 36(1): 41-48.
Hall, A.G., & King, J.C. (2023). The Molecular Basis for Zinc Bioavailability. International Journal of Molecular Sciences,24, 6561. https://doi.org/10.3390/ijms24076561
Harada, E., von Roepenack-Lahaye, E., Clemens, S. (2004). A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to γ-glutamylcysteine and lacks phytochelatin synthase activity. Phytochemistry, 65 (24):3179-3185. https://doi.org/10.1016/j.phytochem.2004.09.017.
Hempel, N., Petrick, I., & Behrendt, F. (2012). Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. Journal of Applied Phycology, 24(6), 1407–1418.
Hojyo, S., & Fukada, T. (2016). Roles of Zinc Signaling in the Immune System, Journal of Immunology Research, 6762343, 21. https://doi.org/10.1155/2016/6762343
Kınacı, E., Kınacı, G., & Budak, Z. (2010). Bitki, hayvan ve insanlarda çinko eksikliğinin etkileri ve çinkonun Eskişehir topraklarındaki durumu. Eskişehir Ticaret Borsası Dergisi 2: 12-15.
Lichtenthaler, H. K. (1987). Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. Journal of Plant Physiology, 131(1-2), 101-110.
Liestianty, D., Rodianawati, I., Arfah R. A., Assa, A., Patimah, Sundari, & Muliadi. (2019). IOP Conf. Ser.: Mater. Sci. Eng. 509: 012031. https://doi.org/10.1088/1757-899X/509/1/012031
Lim, K.H.C., Riddell, L.J., Nowson, C.A., Booth, A.O., & Szymlek-Gay, E.A. (2013). Iron and Zinc Nutrition in the Economically-Developed World: A Review. Nutrients, 5, 3184-3211. https://doi.org/10.3390/nu5083184
Pane, L., Solisio, C., Lodi, A., Luigi, M. G., & Converti, A. (2008). Effect of extracts from Spirulina platensis bioaccumulating cadmium and zinc on L929 cells. Ecotoxicology and Environmental Safety, 70:121–126. https://doi. org/10.1016/j.ecoenv.2007.05.019
Pawlik-Skowrońska, B. (2001). Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquatic Toxicology, 52(3-4):241-249. https://doi.org/10.1016/S0166-445X(00)00144-2.
Santos-Ballardo, D. U., Rossi, S., Hernández, V., Gómez R. V., Rendón-Unceta, M. C., Caro-Corrales, J., & Valdez-Ortiz, A. (2015). A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture, 448:87-92. https://doi.org/10.1016/j.aquaculture.2015.05.044.
Spirulina Market Size, Global Industry, Share, Analysis, Trends and Forecast 2022 – 2030, Report ID: ARC2680, October, 2022. https://www.acumenresearchandconsulting.com/spirulina-market
Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57(9), 399-11. https://doi.org/10.1016/S0753-3322(03)00081-7.
Vonshak, A. (1986). Laboratory techniques for the cultivation of microalgae. In Richmond A (ed.), Handbook of Microalgal Mass Culture, CRC Press Inc, Boca Raton, Florida, pp. 117–145.
Walsh, C.T., Sandstead, H.H., Prasad, A.S., Newberne, P.M., & Fraker, P.J. (1994). Zinc: health effects and research priorities for the 1990s. Environmental Health Perspectives 102(2): 5-46.
Wellburn, A.R. (1994). The Spectral Determination of Chlorophylls A and B, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144, 307-313.
Yokokawa, H., Morita, Y., Hamada, I., Ohta Y., Fukui N., Makino N., Ohata E. & Naito T. Demographic and clinical characteristics of patients with zinc deficiency: analysis of a nationwide Japanese medical claims database. Scientific Reports. 14, 2791. https://doi.org/10.1038/s41598-024-53202-0.
Zarrouk 1966, Contribution a l’etude d’une Cyanobacterie: Influence de Divers Facteurs Physiques et Chimiques sur la Croissanceet la Photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Ph. D. Thesis. University of Paris, France.
Zdziebłowska, S., Czarnecki, M., Ciosek-Skibińska, P., & Ruzik, L. (2024). The microalgae’s ability to accumulate selected trace elements studied by ICP-MS/MS and chemometric methods. Journal of Trace Elements in Medicine and Biology, 81(12):73-51.https://doi.org/10.1016/j.jtemb.2023.127351.
Zhou, T., Wang J., Zheng H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R., & Liu, Y. (2018). Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresource Technology, 269:285-291. https://doi.org/10.1016/j.biortech.2018.08.131.
Zhou, T., Wang, J., Zheng, H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R., & Liu Y. (2018). Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresource Technology, 269:285-291. https://doi.org/10.1016/j.biortech.2018.08.131.
Zinicovscaia, I., Cepoi, L., Rudi, L., Chiriac, T., Grozdov, D., & Vergel K. (2021). Effect of zinc-containing systems on Spirulina platensis bioaccumulation capacity and biochemical composition. Environmental Science and Pollution Research, 28, 52216-52224. https://doi.org/10.1007/s11356-021-14457-6
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.