Influence of Grape Heterogeneity on Berry Quality Traits in Table Grapes A Study on the ‘Alphonse Lavallée’ Variety

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i10.1806-1811.7112

Keywords:

Berry density, TSS, Total phenol, Berry firmness

Abstract

The study, conducted in 2023 at the vineyard of the Agricultural Research and Application Center of Tokat Gaziosmanpaşa University, focused on the Alphonse Lavallée grape variety, a significant cultivar among table grapes. The research aimed to assess the impact of berry density on various quality parameters. Grape berries were selected across five different density categories (Y0-Y4), including a control group, to evaluate their physical characteristics (including width, length, weight, firmness, and skin color), chemical properties (pH, total titratable acidity, and soluble solids content), and phytochemical attributes (encompassing total phenol content, total antioxidant capacity, and total monomeric anthocyanin levels). The findings revealed that critical quality indicators—namely, soluble solids content, pH, total antioxidant capacity, and total monomeric anthocyanin—were maximized under the Y4 treatment. In contrast, the highest total phenol content was recorded in the Y2 and Y3 treatments. These results underscore the importance of berry density and berry/skin volume as key determinants of grape berry quality. The study contributes valuable insights into the role of these factors in enhancing the overall quality of table grapes, particularly in the context of the Alphonse Lavallée variety.

References

Anonymous. (2016). Table and Dried Fao-Oiv Focus 2016. https://www.oiv.int/public/medias/5268/fao-oiv-focus-2016.pdf (Accessed, 10.07.2024)

Anonymous. (2021). Annual Assessment of the World Vine and Wine Sector in 2021.

Anonymous. (2023). State of the world vine and wine sector in 2023. https://www.oiv.int/sites/default/files/202404/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf (date of access: 10.07.2024)

Barbagallo, M.G., Guidoni, S., Hunter, J.J. (2011). Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. South African Journal of Enology and Viticulture, 32(1), 129-136. DOI: https://doi.org/10.21548/32-1-1372

Bravdo, B., Hepner, Y., Loinger, C., Cohen, S., Tabacman, H. (1985). Effect of irrigation and crop level on growth, yield and wine quality of cv. Cabernet Sauvignon. American Journal of Enology and Viticulture, 36, 132-139. DOI: 10.5344/ajev.1985.36.2.132

Canals, R., Llaudy, M.C., Valls, J., Canals, J.M., Zamora, F. (2005). Influence of ethanol concentration on the extraction of colour and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. Journal of Agricultural and Food Chemistry, 53, 4019-4025. https://doi.org/10.1021/jf047872v

Cemeroğlu, B. (1992). Fundamentals of analysis methods in the fruit and vegetable processing industry. Biltav Publications, University Books Series, No: 02-2. (in Turkish)

Chen, W. K., He, F., Wang, Y. X., Liu, X., Duan, C. Q., Wang, J. (2018). Influences of berry size on fruit composition and wine quality of Vitis vinifera L. cv. 'Cabernet Sauvignon' grapes. South African Journal of Enology and Viticulture, 39(1), 67-76. https://doi.org/10.21548/39-1-2439

Crespo, P., Martínez-Zamora, L., Artés-Hernández, F., Tornel, M. (2024). New table grape hybrids development from teinturier population with enhanced phytochemical quality. Scientia Horticulturae, 326, 112756. DOI:10.1016/j.scienta.2023.112756

Çelik, H. (2006). Grape Cultivar Catalog. Sunfidan A.Ş. Professional Books Series: 3, Ankara, 165 pages. (in Turkish)

Dai, Z. W., Ollat, N., Gomès, E., Decroocq, S., Tandonnet, J.P., Bordenave, L., Pieri, P.,Hilbert, G., Kappel, C., van Leeuwen, C., et al. (2011). Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. American Journal of Enology and Viticulture, 62, 413–425.

Fernandez, L., Pradal, M., Lopez, G., Berud, F., Romieu, C., Torregrosa, L. (2006). Berry size variability in Vitis vinifera L. Vitis, 45(2), 53-55.

Fournand, D., Vicens, A., Sidhoum, L., Souquet, J., Moutounet, M. And Cheynier, V. (2006). Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. Journal of Agricultural and Food Chemistry, 54, 7331–7338. https://doi.org/10.1021/jf061467h

Gil, M., Pascual, O., Gómez-Alonso, S., García-Romero, E., Hermosín-Gutıérrez, I., Zamora F., Canals. J.M. (2015). Influence of berry size on red wine colour and composition. Australian Journal of Grape and Wine Research, 21, 200–212. https://doi.org/10.1111/ajgw.12123

Giusti, M.M., Rodríguez-Saona, L.E., Griffin, D., Wrolstad, R.E. (1999). Electrospray and tandem mass spectroscopy as tools for anthocyanin characterization. Journal of Agricultural and Food Chemistry, 47(11), 4657-4664. https://doi.org/10.1021/jf981242+

Gouot, J.C., Smith. J.P., Holzapfel, B.P., Walker, A.R., Barril, C. (2019). Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 70(2):397–423. https:// doi.org/10.1093/jxb/ery392

Haselgrove, L., Botting, D., van Heeswijck, R., Høj, P. B., Dry, P. R., Ford, C., et al. (2000). Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv. Shiraz grape berries. Australian Journal of Grape and Wine Research, 6, 141–149. https://doi.org/10.1111/j.1755-0238.2000.tb00173.x

Holt, H.E., Francis, I.L., Field, J., Herderich, M.J., Iland, P.G. (2008). Relationships between berry size, berry phenolic composition and wine quality scores for Cabernet Sauvignon (Vitis vinifera L.) from different pruning treatments and different vintages. Australian Journal of Grape and Wine Research, 14(3), 191-202.

Houel, C., Martin-Magniette, M.L., Nicolas, S.D., Lacombe, T., Le-Cunff, L., Franck, D., Torregrosa, L., Conéjéro, G., Lalet, S., This, P., Adam- Blondon, A.F. (2013). Genetic variability of berry size in the grapevine (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 19(2), 208-220. https://doi.org/10.1111/ajgw.12021

Hunter, J.J., Barbagallo, M.G., Guidoni, S. (2015). Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. South African Journal of Enology and Viticulture, 32(1):129-136. https://doi.org/10.21548/32-1-1372

Keller, M., Mills, L.J., Harbertson, J.F. (2011). Rootstock effects on deficit-irrigated winegrapes in a dry climate: Vigor, yield formation, and fruit ripening. American Journal of Enology and Viticulture, 63(1), 29-39. DOI: 10.5344/ajev.2011.11078

Kennedy, J.A., Matthews, M.A., Waterhouse, A.L. (2002). Effect of maturity and vine water status on grape skin and wine flavonoids. American Journal of Enology and Viticulture, 53(4), 268-274. DOI:10.5344/ajev.2002.53.4.268

Kontoudakis, N., Esteruelas, M., Fort, F., Canals, J.M., De Freitas, V., Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124(3), 767–774. DOI:10.1016/j.foodchem.2010.06.093

Liu, X., Li, J., Tian, Y., Liao, M., Zhang, Z. (2016). Influence of berry heterogeneity on phenolics and antioxidant activity of grapes and wines: A primary study of the new winegrape cultivar Meili (Vitis vinifera L.). PLoS ONE, 11, e0151276. DOI: 10.1371/journal.pone.0151276

Matthews, M.A., Anderson, M.M. (1988). Fruit ripening in Vitis vinifera L.: Response to seasonal water deficits. American Journal of Enology and Viticulture, 39(4), 313-320. DOI: 10.5344/ajev.1988.39.4.313

Melo, M.S., Schultz, H.R., Volschenk, C.G., Hunter, J.J. (2015). Berry size variation of Vitis vinifera L. cv. Syrah: Morphological dimensions, berry composition and wine quality. South African Journal of Enology and Viticulture, 36(1), 1-10. DOI:10.21548/36-1-931

Özgen, M., Reese, R. N., Tulio, A. Z., Miller, A. R., Scheerens, J. C. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6- sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,20- diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agriculture and Food Chemistry, 54(4), 1151–1157. DOI:10.1021/jf051960d

Petrie, P.R., Clingeleffer, P.R. (2006). Crop thinning (hand versus mechanical), grape maturity and anthocyanin concentration: Outcomes from irrigated Cabernet Sauvignon (Vitis vinifera L.) in a warm climate. Australian Journal of Grape and Wine Research, 12(1), 21-29. DOİ: 10.1111/j.1755-0238.2006.tb00040.x

Pisciotta, A., Di Lorenzo, R., Barbagallo, M.G., Hunter, J.J. (2013). Berry characterisation of cv. Shiraz according to position on the rachis. South African Journal of Enology and Viticulture, 34(1), 100-107. DOİ: https://doi.org/10.21548/34-1-1085

Roby, G., Harbertson, J.F., Adams, D.A., Matthews, M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2), 100-107. DOI:10.1111/j.1755-0238.2004.tb00012.x

Roby, G., Matthews, M. (2004). Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Australian Journal of Grape and Wine Research, 10(1), 74-82. DOI:10.1111/j.1755-0238.2004.tb00009.x

Rolle, L., Río Segade, S., Torchio, F., Giacosa, S., Cagnasso, E., Marengo, F., Gerbi, V. (2011). Influence of grape density and harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening. Journal of Agricultural and Food Chemistry, 59(16), 8796–8805. DOI:10.1021/jf201318x

Shellie, K.C. (2010). Water deficit effect on ratio of seed to berry fresh weight and berry weight uniformity in winegrape cv. Merlot. American Journal of Enology and Viticulture, 61(3), 414-418. DOI:10.5344/ajev.2010.61.3.414

Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. DOI: 10.5344/ajev.1965.16.3.144

Smart, R. E., Robinson, J. B., Due, G. R., Brien, C.J. (1985). Canopy microclimate modification for the cultivar Shiraz. I. Definition of canopy microclimate. Vitis, 24(1), 17–31. DOI: https://doi.org/10.5073/vitis.1985.24.17-31

Šuklje, K., Lisjak, K., Baša Česnik, H., Janeš, L., Du Toit, W., Coetzee, Z., Vanzo, A., Deloire, A. (2012). Classification of grape berries according to diameter and total soluble solids to study the effect of light and temperature on methoxypyrazine, glutathione, and hydroxycinnamate evolution during ripening of Sauvignon Blanc (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(37), 9454-9461. DOI: https://doi.org/10.1021/jf3020766

Tarter, M., Keuter, S. (2005). Effect of rachis position on size and maturity of Cabernet Sauvignon berries. American Journal of Enology and Viticulture, 56, 86–89. DOI: 10.5344/ajev.2005.56.1.86

Wong, D.C.J., Gutierrez, R.L., Dimopoulos, N., Gambetta, G.A., Castellarin, S.D. (2016). Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. BMC Genomics, 17(1), 416. DOI: 10.1186/s12864-016-2660-z

Yaylak, B. (2022). Determination of Morphological and Phytochemical Properties Based on the Size of Clusters and Berries of the Papazkarası Grape Variety from Different Terroirs in the Thrace Region. Master's Thesis in Horticulture. Tekirdağ Namık Kemal University, Institute of Science. (in Turkish)

Downloads

Published

15.10.2024

How to Cite

Sucu, S., & Topcu Altıncı, N. (2024). Influence of Grape Heterogeneity on Berry Quality Traits in Table Grapes A Study on the ‘Alphonse Lavallée’ Variety. Turkish Journal of Agriculture - Food Science and Technology, 12(10), 1806–1811. https://doi.org/10.24925/turjaf.v12i10.1806-1811.7112

Issue

Section

Research Paper