Applications and Development Potential of Nano-Biotechnology in Biomedical and Health Areas

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2441-2450.7125

Keywords:

Nano-biotechnology, nanostructure, biomedical, health

Abstract

Nanotechnology is the research field of atomic, molecular or macromolecules with a size in the range of 1-100 nm to develop structures, devices and systems with new functional properties. Nanotechnology is a discipline that offers novel opportunities in physics, chemistry, biology, engineering and health, and is prioritized by modern governments and private organizations in the establishment of priority research infrastructures. This discipline provides numerous opportunities in the development of food, optics, electronics, pharmaceuticals, medical imaging techniques, especially in the biomedical and health fields. Nanobiotechnology is the combination of nanotechnology and biotechnology disciplines. Nanobiotechnology is utilized biomedically and medically in the treatment of cancer and neurodegenerative diseases, smart drug delivery, vaccine and biosensor development, medical imaging, gene therapy. Nano-based approaches are being developed to improve traditional biotechnological methods and limit the side effects caused by conventional treatments. Therefore, of the applicability of nanotechnology in different disciplines and fields, nano-based techniques play important roles for a sustainable future and have an impact on global economies. In this study, it is aimed to review the application opportunities and development potentials of nano-biotechnological approaches, especially in biomedical and health fields. In relation to the subject, nanotechnology and application areas, nanobiotechnology and its development, global nanobiotechnology market, classification of nanobiotechnologies, nanobiotechnological tools and application areas are emphasized.

References

Akhshabi, S., Biazar, E., Singh, V., Heidari Keshel, S., & Geetha, N. (2018). The effect of the carbodiimide cross-linker on the structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat. International Journal of Nanomedicine, 13, 4405–4416. https://doi.org/10.2147/IJN.S165739

Alavi, M., & Hamidi, M. (2019). Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 34(1), 10.1515/dmpt-2018-0032. https://doi.org/10.1515/dmpt-2018-0032

Alavi, M., & Nokhodchi, A. (2020). An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate Polymers, 227, 115349. https://doi.org/10.1016/j.carbpol.2019.115349

Ali, M. A., Rehman, I., Iqbal, A., Din, S., Rao, A. Q., Latif, A., Samiullah, T. R., Azam, S., & Husnain, T. (2014). Nanotechnology: a New Frontier in Agriculture. Advancements in Life Sciences, 1, 129-138.

Alshora, D. H., Ibrahim, M. A., & Alanazi, F. K. (2016). Nanotechnology from particle size reduction to enhancing aqueous solubility. Surface Chemistry of Nanobiomaterials, 3, 163–191. https://doi.org/10.1016/B978-0-323-42861-3.00006-6

Alvarado, K., Bolaños, M., Camacho, C., Quesada, E., & Vega-Baudrit, J. (2019). Nanobiotechnology in Agricultural Sector: Overview and Novel Applications. Journal of Biomaterials and Nanobiotechnology, 10(02), 120–141. https://doi.org/10.4236/jbnb.2019.102007

Anis, H. A. (2019). Gene therapy in the era of nanotechnology/a review of current data. Journal of Cancer Prevention &Amp; Current Research, 10(1), 1-2. https://doi.org/10.15406/jcpcr.2019.10.00380

Bao, G., Tang, M., Zhao, J., & Zhu, X. (2021). Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Research, 11(1), 6. https://doi.org/10.1186/s13550-021-00750-5

Baranova, E., Fronzes, R., Garcia-Pino, A., Van Gerven, N., Papapostolou, D., Péhau-Arnaudet, G., Pardon, E., Steyaert, J., Howorka, S., & Remaut, H. (2012). SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature, 487(7405), 119–122. https://doi.org/10.1038/nature11155

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules (Basel, Switzerland), 25(1), 112. https://doi.org/10.3390/molecules25010112

Bokhari, H. (2018). Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens. Critical Reviews in Microbiology, 44(4), 504–521. https://doi.org/10.1080/1040841x.2018.1444013

Brigger, I., Dubernet, C., & Couvreur, P. (2012). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 64, 24–36. https://doi.org/10.1016/s0169-409x(02)00044-3

Broisat, A., Hernot, S., Toczek, J., De Vos, J., Riou, L. M., Martin, S., Ahmadi, M., Thielens, N., Wernery, U., Caveliers, V., Muyldermans, S., Lahoutte, T., Fagret, D., Ghezzi, C., & Devoogdt, N. (2012). Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 110(7), 927–937. https://doi.org/10.1161/circresaha.112.265140

Chan, K. H., & Tay, J. J. J. (2019). Advancement of Peptide Nanobiotechnology via Emerging Microfluidic Technology. Micromachines, 10(10), 627. https://doi.org/10.3390/mi10100627

Chen, J., Guo, Z., Tian, H., & Chen, X. (2016). Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods &Amp; Clinical Development, 3, 16023. https://doi.org/10.1038/mtm.2016.23

Clift, D., McEwan, W. A., Labzin, L. I., Konieczny, V., Mogessie, B., James, L. C., & Schuh, M. (2017). A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell, 171(7), 1692-1706.e18. https://doi.org/10.1016/j.cell.2017.10.033

Crommelin, D. J., Storm, G., Jiskoot, W., Stenekes, R., Mastrobattista, E., & Hennink, W. E. (2003). Nanotechnological approaches for the delivery of macromolecules. Journal of controlled release: official journal of the Controlled Release Society, 87(1-3), 81–88. https://doi.org/10.1016/s0168-3659(03)00014-2

Danie Kingsley, J., Ranjan, S., Dasgupta, N., & Saha, P. (2013). Nanotechnology for tissue engineering: Need, techniques and applications. Journal of Pharmacy Research, 7(2), 200–204.

de Beer, M. A., & Giepmans, B. N. G. (2020). Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Frontiers in Cellular Neuroscience, 14, 573278. https://doi.org/10.1016/j.jopr.2013.02.021

De Meyer, T., Muyldermans, S., & Depicker, A. (2014). Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 32(5), 263–270. https://doi.org/10.1016/j.tibtech.2014.03.001

de Morais, M. G., Martins, V. G., Steffens, D., Pranke, P., & da Costa, J. A. (2014). Biological applications of nanobiotechnology. Journal of nanoscience and nanotechnology, 14(1), 1007–1017. http://dx.doi.org/10.1166/jnn.2014.8748

Duc, T. N., Hassanzadeh-Ghassabeh, G., Saerens, D., Peeters, E., Charlier, D., & Muyldermans, S. (2012). Nanobody-Based Chromatin Immunoprecipitation. Methods in molecular biology (Clifton, N.J.), 911, 491–505. https://doi.org/10.1007/978-1-61779-968-6_31

Duncan, R., & Gaspar, R. (2011). Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 8(6), 2101–2141. https://doi.org/10.1021/mp200394t

Dutt, Y., Pandey, R. P., Dutt, M., Gupta, A., Vibhuti, A., Vidic, J., Raj, V. S., Chang, C. M., & Priyadarshini, A. (2023). Therapeutic applications of nanobiotechnology. Journal of nanobiotechnology, 21(1), 148. https://doi.org/10.1186/s12951-023-01909-z

El-Sayed, A., & Kamel, M. (2020). Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environmental Science and Pollution Research, 27(16), 19200–19213. https://doi.org/10.1007/s11356-019-06459-2

Fathi-Achachelouei, M., Knopf-Marques, H., Ribeiro da Silva, C. E., Barthès, J., Bat, E., Tezcaner, A., & Vrana, N. E. (2019). Use of Nanoparticles in Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 7, 113. https://doi.org/10.3389/fbioe.2019.00113

Freitas, R. A. (2005). Current status of nanomedicine and medical nanorobotics. Current Status of Nanomedicine and Medical Nanorobotic, 2, 1–25. https://doi.org/10.1166/jctn.2005.01

Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 601626. https://doi.org/10.3389/fphar.2021.601626

Ge, S., Li, J., Yu, Y., Chen, Z., Yang, Y., Zhu, L., Sang, S., & Deng, S. (2021). Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules, 26(21), 6482. https://doi.org/10.3390/molecules26216482

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004

Giret, S., Wong Chi Man, M., & Carcel, C. (2015). Mesoporous‐Silica‐Functionalized Nanoparticles for Drug Delivery. Chemistry – a European Journal, 21(40), 13850–13865. https://doi.org/10.1002/chem.201500578

Gonzalez-Sapienza, G., Rossotti, M. A., & Tabares-da Rosa, S. (2017). Single-Domain Antibodies As Versatile Affinity Reagents for Analytical and Diagnostic Applications. Frontiers in Immunology, 8, 977. https://doi.org/10.3389/fimmu.2017.00977

Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. D., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

Han, S., Zou, J., Xiao, F., Xian, J., Liu, Z., Li, M., Luo, W., Feng, C., & Kong, N. (2024). Nanobiotechnology boosts ferroptosis: opportunities and challenges. Journal of nanobiotechnology, 22(1), 606. https://doi.org/10.1186/s12951-024-02842-5

Han, S., Zou, J., Xiao, F., Xian, J., Liu, Z., Li, M., Luo, W., Feng, C., & Kong, N. (2024). Nanobiotechnology boosts ferroptosis: opportunities and challenges. Journal of nanobiotechnology, 22(1), 606. https://doi.org/10.1186/s12951-024-02842-5Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T., & Marei, H. (2018). Nanoparticles in tissue engineering: applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637–5655. https://doi.org/10.2147/IJN.S153758

Helma, J., Cardoso, M. C., Muyldermans, S., & Leonhardt, H. (2015). Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 209(5), 633–644. https://doi.org/10.1083/jcb.201409074

Hernández, N. P., Juanes-Velasco, P., Landeira-Viñuela, A., Bareke, H., Montalvillo, E., Góngora, R., & Fuentes, M. (2021). Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers, 13(11), 2821. https://doi.org/10.3390/cancers13112821

Huang, H., Jiang, C. T., Shen, S., Liu, A., Gan, Y. J., Tong, Q. S., Chen, S. B., Gao, Z. X., Du, J. Z., Cao, J., & Wang, J. (2019). Nanoenabled Reversal of IDO1-Mediated Immunosuppression Synergizes with Immunogenic Chemotherapy for Improved Cancer Therapy. Nano Letters, 19(8), 5356–5365. https://doi.org/10.1021/acs.nanolett.9b01807

Jain K. K. (2020). Role of Nanobiotechnology in Drug Delivery. Methods in molecular biology (Clifton, N.J.), 2059, 55–73. https://doi.org/10.1007/978-1-4939-9798-5_2

Jampilek, J., & Placha, D. (2021). Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics, 13(12), 1994. https://doi.org/10.3390/pharmaceutics13121994

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98

Jiang, T., Li, Q., Qiu, J., Chen, J., Du, S., Xu, X., Wu, Z., Yang, X., Chen, Z., & Chen, T. (2022). Nanobiotechnology: Applications in Chronic Wound Healing. International journal of nanomedicine, 17, 3125–3145. https://doi.org/10.2147/IJN.S372211

Jiang, T., Li, Q., Qiu, J., Chen, J., Du, S., Xu, X., Wu, Z., Yang, X., Chen, Z., & Chen, T. (2022). Nanobiotechnology: Applications in Chronic Wound Healing. International journal of nanomedicine, 17, 3125–3145. https://doi.org/10.2147/IJN.S372211Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C. D., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Drug design, development and therapy, 11, 2871–2890. https://doi.org/10.2147/dddt.s142337

Kaur, K., & Thombre, R. (2021). Nanobiotechnology: methods, applications, and future prospects. In Elsevier eBooks (ss. 1–20). https://doi.org/10.1016/b978-0-12-822878-4.00001-8

Khan, I., Khan, M., Umar, M. N., & Oh, D. H. (2015). Nanobiotechnology and its applications in drug delivery system: a review. IET nanobiotechnology, 9(6), 396–400. https://doi.org/10.1049/iet-nbt.2014.0062

Kim, B. Y., Rutka, J.T., & Chan, W. C. (2010). Nanomedicine. NEJM, 363(25): 2434–2443.

Kompella, U. B., Amrite, A. C., Pacha Ravi, R., & Durazo, S. A. (2013). Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Progress in Retinal and Eye Research, 36, 172–198. https://doi.org/10.1016/j.preteyeres.2013.04.001

Kozma, G. T., Shimizu, T., Ishida, T., & Szebeni, J. (2020). Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Advanced Drug Delivery Reviews, 154–155, 163–175. https://doi.org/10.1016/j.addr.2020.07.024

Lugani, Y., Sooch, B. S., Singh, P., & Kumar, S. (2021). Nanobiotechnology applications in food sector and future innovations. Microbial Biotechnology in Food and Health, 197–225. https://doi.org/10.1016/B978-0-12-819813-1.00008-6

Maine, E., Thomas, V., & Utterback, J. (2014). Radical innovation from the confluence of technologies: Innovation management strategies for the emerging nanobiotechnology industry. Journal of Engineering and Technology Management, 32, 1–25. https://doi.org/10.1016/j.jengtecman.2013.10.007

Mainini, F., De Santis, F., Fucà, G., Di Nicola, M., Rivoltini, L., & Eccles, M. (2021). Nanobiotechnology and Immunotherapy: Two Powerful and Cooperative Allies against Cancer. Cancers, 13(15), 3765. https://doi.org/10.3390/cancers13153765

Malhotra, M., Tomaro-Duchesneau, C., Saha, S., & Prakash, S. (2014). Intranasal Delivery of Chitosan–siRNA Nanoparticle Formulation to the Brain. Methods in Molecular Biology, 1141, 233–247. https://doi.org/10.1007/978-1-4939-0363-4_15

Market Research Future. (2024, Ekim). Nanomaterials Market Research Report. Erişim tarihi: 25.10.2024 [https://www.marketresearchfuture.com]

Mirón-Barroso, S., Domènech,. E. B., & Trigueros, S. (2021). Nanotechnology-Based .Strategies to Overcome Current Barriers in Gene Delivery. International Journal of Molecular Sciences, 22(16), 8537. https://doi.org/10.3390/ijms22168537

Muyldermans, S. (2013). Nanobodies: Natural Single-Domain Antibodies. Annual Review of Biochemistry, 82(1), 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449

Na, K., & Bae, Y. H. (2002). Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharmaceutical research, 19(5), 681–688. https://doi.org/10.1023/a:1015370532543

Nishiyama, N., Matsumura, Y., & Kataoka, K. (2016). Development of polymeric micelles for targeting intractable cancers. Cancer Science, 107(7), 867–874. https://doi.org/10.1111/cas.12960

Pandey, P., Purohit, D., & Dureja, H. (2018). Nanosponges –A Promising Novel Drug Delivery System. Recent Patents on Nanotechnology, 12(3), 180–191. https://doi.org/10.2174/1872210512666180925102842

Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural Nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127. https://doi.org/10.1016/j.nantod.2014.09.009

Patel, S. S., & Patel, P. N. (2023). A brief review on nanorobotics applications in medicine and future prospects. Asian Journal of Research in Pharmaceutical Sciences, 13(1), 19–28. https://doi.org/10.52711/2231-5659.2023.00004

Patel, S. S., & Patel, P. N. (2023). A brief review on nanorobotics applications in medicine and future prospects. Asian Journal of Research in Pharmaceutical Sciences, 13(1), 19–28. https://doi.org/10.52711/2231-5659.2023.00004Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387

Prole, D. L., & Taylor, C. W. (2019). A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling. BMC Biology, 17(1), 41. https://doi.org/10.1186/s12915-019-0662-4

Pugliese, R., & Gelain, F. (2017). Peptidic Biomaterials: From Self-Assembling to Regenerative Medicine. Trends in Biotechnology, 35(2), 145–158. https://doi.org/10.1016/j.tibtech.2016.09.004

Qiu, Q., Ding, X., Chen, J., Chen, S., & Wang, J. (2023). Nanobiotechnology-based treatment strategies for malignant relapsed glioma. Journal of controlled release : official journal of the Controlled Release Society, 358, 681–705. https://doi.org/10.1016/j.jconrel.2023.05.016

Qiu, Q., Ding, X., Chen, J., Chen, S., & Wang, J. (2023). Nanobiotechnology-based treatment strategies for malignant relapsed glioma. Journal of controlled release : official journal of the Controlled Release Society, 358, 681–705. https://doi.org/10.1016/j.jconrel.2023.05.016Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied microbiology and biotechnology, 94(2), 287–293. https://doi.org/10.1007/s00253-012-3969-4

Ram, P., Vivek, K., & Kumar, S. P. (2014). Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology, 13(6), 705–713. https://doi.org/10.5897/AJBX2013.13554

Rasmussen, S. G. F., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., DeVree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., & Kobilka, B. K. (2011). Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature, 469(7329), 175–180. https://doi.org/10.1038/nature09648

Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E., Shu, X., Zhang, J., & Tsien, R. Y. (2017). The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 42(2), 111–129. https://doi.org/10.1016/j.tibs.2016.09.010

Saeed, R. M., Dmour, I., & Taha, M. O. (2020). Stable Chitosan-Based Nanoparticles Using Polyphosphoric Acid or Hexametaphosphate for Tandem Ionotropic/Covalent Crosslinking and Subsequent Investigation as Novel Vehicles for Drug Delivery. Frontiers in Bioengineering and Biotechnology, 24, 4-8. https://doi.org/10.3389/fbioe.2020.00004

Sahoo, S. K., & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug discovery today, 8(24), 1112–1120. https://doi.org/10.1016/S1359-6446(03)02903-9

Schudel, A., Francis, D. M., & Thomas, S. N. (2019). Material design for lymph node drug delivery. Nature Reviews Materials, 4(6), 415–428. https://doi.org/10.1038/s41578-019-0110-7

Shahcheraghi, N., Golchin, H., Sadri, Z., Tabari, Y., Borhanifar, F., & Makani, S. (2022). Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech, 12(3), 65. https://doi.org/10.1007/s13205-021-03108-9

Sharp, P. A., & Langer, R. (2011). Promoting Convergence in Biomedical Science. Science, 333(6042), 527–527. https://doi.org/10.1126/science.1205008

Shrestha, S., & Bhattacharya, S. (2020). Versatile Use of Nanosponge in the Pharmaceutical Arena: A Mini-Review. Recent Patents on Nanotechnology, 14(4), 351–359. https://doi.org/10.2174/1872210514999200901200558

Siontorou, C. G. (2013). Nanobodies as novel agents for disease diagnosis and therapy. International Journal of Nanomedicine, 8, 4215–4227. https://doi.org/10.2147/IJN.S39428

Stewart-Ornstein, J., & Lahav, G. (2016). Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. Cell Reports, 14(7), 1800–1811. https://doi.org/10.1016/j.celrep.2016.01.045

Sudhakar, C., Upadhyay, N., Verma, A., Jain, A., Narayana Charyulu, R., & Jain, S. (2015). Nanomedicine and Tissue Engineering. Nanotechnology Applications for Tissue Engineering, 1–19. https://doi.org/10.1016/B978-0-323-32889-0.00001-7

Swain, P. S., Rajendran, D., Rao, S. B. N., & Dominic, G. (2015). Preparation and effects of nano mineral particle feeding in livestock: A review. Veterinary World, 8(7), 888–891. https://doi.org/10.14202/vetworld.2015.888-891

Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23–38. https://doi.org/10.1007/s11192-007-1897-3

Tang, L., Fu, C., Zhang, A., Li, X., Cao, Y., Feng, J., Liu, H., Dong, H., & Wang, W. (2023). Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomaterials science, 11(3), 791–812. https://doi.org/10.1039/d2bm01790c

Towards Healthcare. (2024, Ekim). Nanomedicine Market Size Envisioned at USD 562.93 Billion by 2032. Erişim tarihi: 25.10.2024 [https://www.towardshealthcare.com/insights/nanomedicine-market-sizing#:~:text=The%20nanomedicine%20market%20size%20achieved,10.1%25%20from%202024%20to%202032]

Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie (International ed. in English), 48(1), 60–103. https://doi.org/10.1002/anie.200802248

Viktor, F., Emese, B., Geza, J., & Istvan, A. (2016). Formulation aspects of nanopharmaceuticals and nanotechnology I Introduction, biopharmaceutical aspects. Acta Pharmaceutica Hungarica, 86(2), 43–52.

Wang, J., & Shapira, P. (2009). Partnering with universities: a good choice for nanotechnology start-up firms? Small Business Economics, 38(2), 197–215. https://doi.org/10.1007/s11187-009-9248-9

Wang, Y., Fan, Z., Shao, L., Kong, X., Hou, X., Tian, D., Sun, Y., Xiao, Y., & Yu, L. (2016). Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine, 11, 3287–3303. https://doi.org/10.2147/ijn.s107194

Wang, T., Zhang, X., Xu, Y., Xu, Y., Zhang, Y., & Zhang, K. (2022). Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. Journal of materials chemistry. B, 10(37), 7361–7383. https://doi.org/10.1039/d2tb00600f

Xian, H., Zhang, Y., Yu, C., & Wang, Y. (2023). Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics, 15(2), 620. https://doi.org/10.3390/pharmaceutics15020620

Yamada, Y., & Harashima, H. (2014). A method for screening mitochondrial fusogenic envelopes for use in mitochondrial drug delivery. Methods in molecular biology (Clifton, N.J.), 1141, 57–66. https://doi.org/10.1007/978-1-4939-0363-4_2

Youssef, F. S., El-Banna, H. A., Elzorba, H. Y., & Galal, A. M. (2019). Application of some nanoparticles in the field of veterinary medicine. International Journal of Veterinary Science and Medicine, 7(1), 78–93. https://doi.org/10.1080/23144599.2019.1691379

Yu, S., Xiong, G., Zhao, S., Tang, Y., Tang, H., Wang, K., Liu, H., Lan, K., Bi, X., & Duan, S. (2020). Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). International Journal of Molecular Medicine, 47(2), 444–454. https://doi.org/10.3892/ijmm.2020.4817

Zhao, L., Liu, C., Xing, Y., He, J., O’Doherty, J., Huang, W., & Zhao, J. (2021). Development of a 99mTc-Labeled Single-Domain Antibody for SPECT/CT Assessment of HER2 Expression in Breast Cancer. Molecular pharmaceutics, 18(9), 3616–3622. https://doi.org/10.1021/acs.molpharmaceut.1c00569

Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731

Downloads

Published

12.12.2024

How to Cite

Mehdizadehtapeh, L. (2024). Applications and Development Potential of Nano-Biotechnology in Biomedical and Health Areas. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2441–2450. https://doi.org/10.24925/turjaf.v12is2.2441-2450.7125