Nano - Biyoteknolojinin Biyomedikal ve Sağlık Alanlarında Uygulamaları ve Gelişim Potansiyeli
DOI:
https://doi.org/10.24925/turjaf.v12is2.2441-2450.7125Anahtar Kelimeler:
Nano-biyoteknoloji- nanoyapı- biyomedikal- sağlıkÖzet
Nanoteknoloji, yeni fonksiyonel özelliklere sahip yapılar, cihazlar ve sistemler geliştirmek üzere 1-100 nm aralığında büyüklüğü olan atomik, moleküler veya makromoleküllerin araştırma alanıdr. Nanoteknoloji, fizik, kimya, biyoloji, mühendislik ve sağlık dallarında novel fırsatları sunan, çağdaş devletler ve özel kuruluşlarca öncelikli araştırma alt yapılarının kurulumunda öncelik verilen bir disiplindir. Bu bilimdalı başta biyomedikal ve sağlık alanları olmak üzere, gıda, optik, elektronik, farmasötik, tıbbi görüntüleme teknikleri geliştirmekte sayısız fırsatlar sunmaktadır. Nanobiyoteknoloji ise, nanoteknoloji ve biyoteknoloji disiplinlerinin birleşimidir. Nanobiyoteknolojiden biyomedikal ve tıbbi olarak kanser ve nörodejeneratif hastalıkların tedavisinde akıllı ilaç tesliminde, aşı ve biyosensör geliştirmede, tıbbi görüntülemede, gen tedavisinde faydalanılmaktadır. Nano tabanlı yaklaşımlar, geleneksel biyoteknolojik yöntemleri iyileştirmek ve geleneksel tedavilerin neden olduğu yan etkileri sınırlandırmak için geliştirilmektedir. Bu sebeple, nanoteknolojinin farklı disiplinler ve alanlarda uygulanabilir olması sayesinde, nano tabanlı teknikler sürdürülebilir bir gelecek için önemli roller oynamakta ve Global ekonomiler üzerinde etkiler yaratmaktadır. Bu çalışmada, nano-biyoteknolojik yaklaşımların özellikle biyomedikal ve sağlık alanlarında uygulama fırsatları ve gelişim potansiyellerinin derlenmesi amaçlanmıştır. Konuyla ilgili olarak, nanoteknoloji ve uygulama alanları, nanobiyoteknoloji ve gelişimi, Global nanobiyoteknoloji pazarı, nanobiyoteknolojilerin sınıflandırılması ile nanobiyoteknolojik araçlar ve uygulama alanları üzerinde durulmuştur.
Referanslar
Akhshabi, S., Biazar, E., Singh, V., Heidari Keshel, S., & Geetha, N. (2018). The effect of the carbodiimide cross-linker on the structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat. International Journal of Nanomedicine, 13, 4405–4416. https://doi.org/10.2147/IJN.S165739
Alavi, M., & Hamidi, M. (2019). Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 34(1), 10.1515/dmpt-2018-0032. https://doi.org/10.1515/dmpt-2018-0032
Alavi, M., & Nokhodchi, A. (2020). An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate Polymers, 227, 115349. https://doi.org/10.1016/j.carbpol.2019.115349
Ali, M. A., Rehman, I., Iqbal, A., Din, S., Rao, A. Q., Latif, A., Samiullah, T. R., Azam, S., & Husnain, T. (2014). Nanotechnology: a New Frontier in Agriculture. Advancements in Life Sciences, 1, 129-138.
Alshora, D. H., Ibrahim, M. A., & Alanazi, F. K. (2016). Nanotechnology from particle size reduction to enhancing aqueous solubility. Surface Chemistry of Nanobiomaterials, 3, 163–191. https://doi.org/10.1016/B978-0-323-42861-3.00006-6
Alvarado, K., Bolaños, M., Camacho, C., Quesada, E., & Vega-Baudrit, J. (2019). Nanobiotechnology in Agricultural Sector: Overview and Novel Applications. Journal of Biomaterials and Nanobiotechnology, 10(02), 120–141. https://doi.org/10.4236/jbnb.2019.102007
Anis, H. A. (2019). Gene therapy in the era of nanotechnology/a review of current data. Journal of Cancer Prevention &Amp; Current Research, 10(1), 1-2. https://doi.org/10.15406/jcpcr.2019.10.00380
Bao, G., Tang, M., Zhao, J., & Zhu, X. (2021). Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Research, 11(1), 6. https://doi.org/10.1186/s13550-021-00750-5
Baranova, E., Fronzes, R., Garcia-Pino, A., Van Gerven, N., Papapostolou, D., Péhau-Arnaudet, G., Pardon, E., Steyaert, J., Howorka, S., & Remaut, H. (2012). SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature, 487(7405), 119–122. https://doi.org/10.1038/nature11155
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules (Basel, Switzerland), 25(1), 112. https://doi.org/10.3390/molecules25010112
Bokhari, H. (2018). Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens. Critical Reviews in Microbiology, 44(4), 504–521. https://doi.org/10.1080/1040841x.2018.1444013
Brigger, I., Dubernet, C., & Couvreur, P. (2012). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 64, 24–36. https://doi.org/10.1016/s0169-409x(02)00044-3
Broisat, A., Hernot, S., Toczek, J., De Vos, J., Riou, L. M., Martin, S., Ahmadi, M., Thielens, N., Wernery, U., Caveliers, V., Muyldermans, S., Lahoutte, T., Fagret, D., Ghezzi, C., & Devoogdt, N. (2012). Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 110(7), 927–937. https://doi.org/10.1161/circresaha.112.265140
Chan, K. H., & Tay, J. J. J. (2019). Advancement of Peptide Nanobiotechnology via Emerging Microfluidic Technology. Micromachines, 10(10), 627. https://doi.org/10.3390/mi10100627
Chen, J., Guo, Z., Tian, H., & Chen, X. (2016). Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods &Amp; Clinical Development, 3, 16023. https://doi.org/10.1038/mtm.2016.23
Clift, D., McEwan, W. A., Labzin, L. I., Konieczny, V., Mogessie, B., James, L. C., & Schuh, M. (2017). A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell, 171(7), 1692-1706.e18. https://doi.org/10.1016/j.cell.2017.10.033
Crommelin, D. J., Storm, G., Jiskoot, W., Stenekes, R., Mastrobattista, E., & Hennink, W. E. (2003). Nanotechnological approaches for the delivery of macromolecules. Journal of controlled release: official journal of the Controlled Release Society, 87(1-3), 81–88. https://doi.org/10.1016/s0168-3659(03)00014-2
Danie Kingsley, J., Ranjan, S., Dasgupta, N., & Saha, P. (2013). Nanotechnology for tissue engineering: Need, techniques and applications. Journal of Pharmacy Research, 7(2), 200–204.
de Beer, M. A., & Giepmans, B. N. G. (2020). Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Frontiers in Cellular Neuroscience, 14, 573278. https://doi.org/10.1016/j.jopr.2013.02.021
De Meyer, T., Muyldermans, S., & Depicker, A. (2014). Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 32(5), 263–270. https://doi.org/10.1016/j.tibtech.2014.03.001
de Morais, M. G., Martins, V. G., Steffens, D., Pranke, P., & da Costa, J. A. (2014). Biological applications of nanobiotechnology. Journal of nanoscience and nanotechnology, 14(1), 1007–1017. http://dx.doi.org/10.1166/jnn.2014.8748
Duc, T. N., Hassanzadeh-Ghassabeh, G., Saerens, D., Peeters, E., Charlier, D., & Muyldermans, S. (2012). Nanobody-Based Chromatin Immunoprecipitation. Methods in molecular biology (Clifton, N.J.), 911, 491–505. https://doi.org/10.1007/978-1-61779-968-6_31
Duncan, R., & Gaspar, R. (2011). Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 8(6), 2101–2141. https://doi.org/10.1021/mp200394t
Dutt, Y., Pandey, R. P., Dutt, M., Gupta, A., Vibhuti, A., Vidic, J., Raj, V. S., Chang, C. M., & Priyadarshini, A. (2023). Therapeutic applications of nanobiotechnology. Journal of nanobiotechnology, 21(1), 148. https://doi.org/10.1186/s12951-023-01909-z
El-Sayed, A., & Kamel, M. (2020). Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environmental Science and Pollution Research, 27(16), 19200–19213. https://doi.org/10.1007/s11356-019-06459-2
Fathi-Achachelouei, M., Knopf-Marques, H., Ribeiro da Silva, C. E., Barthès, J., Bat, E., Tezcaner, A., & Vrana, N. E. (2019). Use of Nanoparticles in Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 7, 113. https://doi.org/10.3389/fbioe.2019.00113
Freitas, R. A. (2005). Current status of nanomedicine and medical nanorobotics. Current Status of Nanomedicine and Medical Nanorobotic, 2, 1–25. https://doi.org/10.1166/jctn.2005.01
Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 601626. https://doi.org/10.3389/fphar.2021.601626
Ge, S., Li, J., Yu, Y., Chen, Z., Yang, Y., Zhu, L., Sang, S., & Deng, S. (2021). Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules, 26(21), 6482. https://doi.org/10.3390/molecules26216482
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004
Giret, S., Wong Chi Man, M., & Carcel, C. (2015). Mesoporous‐Silica‐Functionalized Nanoparticles for Drug Delivery. Chemistry – a European Journal, 21(40), 13850–13865. https://doi.org/10.1002/chem.201500578
Gonzalez-Sapienza, G., Rossotti, M. A., & Tabares-da Rosa, S. (2017). Single-Domain Antibodies As Versatile Affinity Reagents for Analytical and Diagnostic Applications. Frontiers in Immunology, 8, 977. https://doi.org/10.3389/fimmu.2017.00977
Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. D., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
Han, S., Zou, J., Xiao, F., Xian, J., Liu, Z., Li, M., Luo, W., Feng, C., & Kong, N. (2024). Nanobiotechnology boosts ferroptosis: opportunities and challenges. Journal of nanobiotechnology, 22(1), 606. https://doi.org/10.1186/s12951-024-02842-5
Han, S., Zou, J., Xiao, F., Xian, J., Liu, Z., Li, M., Luo, W., Feng, C., & Kong, N. (2024). Nanobiotechnology boosts ferroptosis: opportunities and challenges. Journal of nanobiotechnology, 22(1), 606. https://doi.org/10.1186/s12951-024-02842-5Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T., & Marei, H. (2018). Nanoparticles in tissue engineering: applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637–5655. https://doi.org/10.2147/IJN.S153758
Helma, J., Cardoso, M. C., Muyldermans, S., & Leonhardt, H. (2015). Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 209(5), 633–644. https://doi.org/10.1083/jcb.201409074
Hernández, N. P., Juanes-Velasco, P., Landeira-Viñuela, A., Bareke, H., Montalvillo, E., Góngora, R., & Fuentes, M. (2021). Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers, 13(11), 2821. https://doi.org/10.3390/cancers13112821
Huang, H., Jiang, C. T., Shen, S., Liu, A., Gan, Y. J., Tong, Q. S., Chen, S. B., Gao, Z. X., Du, J. Z., Cao, J., & Wang, J. (2019). Nanoenabled Reversal of IDO1-Mediated Immunosuppression Synergizes with Immunogenic Chemotherapy for Improved Cancer Therapy. Nano Letters, 19(8), 5356–5365. https://doi.org/10.1021/acs.nanolett.9b01807
Jain K. K. (2020). Role of Nanobiotechnology in Drug Delivery. Methods in molecular biology (Clifton, N.J.), 2059, 55–73. https://doi.org/10.1007/978-1-4939-9798-5_2
Jampilek, J., & Placha, D. (2021). Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics, 13(12), 1994. https://doi.org/10.3390/pharmaceutics13121994
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98
Jiang, T., Li, Q., Qiu, J., Chen, J., Du, S., Xu, X., Wu, Z., Yang, X., Chen, Z., & Chen, T. (2022). Nanobiotechnology: Applications in Chronic Wound Healing. International journal of nanomedicine, 17, 3125–3145. https://doi.org/10.2147/IJN.S372211
Jiang, T., Li, Q., Qiu, J., Chen, J., Du, S., Xu, X., Wu, Z., Yang, X., Chen, Z., & Chen, T. (2022). Nanobiotechnology: Applications in Chronic Wound Healing. International journal of nanomedicine, 17, 3125–3145. https://doi.org/10.2147/IJN.S372211Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C. D., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Drug design, development and therapy, 11, 2871–2890. https://doi.org/10.2147/dddt.s142337
Kaur, K., & Thombre, R. (2021). Nanobiotechnology: methods, applications, and future prospects. In Elsevier eBooks (ss. 1–20). https://doi.org/10.1016/b978-0-12-822878-4.00001-8
Khan, I., Khan, M., Umar, M. N., & Oh, D. H. (2015). Nanobiotechnology and its applications in drug delivery system: a review. IET nanobiotechnology, 9(6), 396–400. https://doi.org/10.1049/iet-nbt.2014.0062
Kim, B. Y., Rutka, J.T., & Chan, W. C. (2010). Nanomedicine. NEJM, 363(25): 2434–2443.
Kompella, U. B., Amrite, A. C., Pacha Ravi, R., & Durazo, S. A. (2013). Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Progress in Retinal and Eye Research, 36, 172–198. https://doi.org/10.1016/j.preteyeres.2013.04.001
Kozma, G. T., Shimizu, T., Ishida, T., & Szebeni, J. (2020). Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Advanced Drug Delivery Reviews, 154–155, 163–175. https://doi.org/10.1016/j.addr.2020.07.024
Lugani, Y., Sooch, B. S., Singh, P., & Kumar, S. (2021). Nanobiotechnology applications in food sector and future innovations. Microbial Biotechnology in Food and Health, 197–225. https://doi.org/10.1016/B978-0-12-819813-1.00008-6
Maine, E., Thomas, V., & Utterback, J. (2014). Radical innovation from the confluence of technologies: Innovation management strategies for the emerging nanobiotechnology industry. Journal of Engineering and Technology Management, 32, 1–25. https://doi.org/10.1016/j.jengtecman.2013.10.007
Mainini, F., De Santis, F., Fucà, G., Di Nicola, M., Rivoltini, L., & Eccles, M. (2021). Nanobiotechnology and Immunotherapy: Two Powerful and Cooperative Allies against Cancer. Cancers, 13(15), 3765. https://doi.org/10.3390/cancers13153765
Malhotra, M., Tomaro-Duchesneau, C., Saha, S., & Prakash, S. (2014). Intranasal Delivery of Chitosan–siRNA Nanoparticle Formulation to the Brain. Methods in Molecular Biology, 1141, 233–247. https://doi.org/10.1007/978-1-4939-0363-4_15
Market Research Future. (2024, Ekim). Nanomaterials Market Research Report. Erişim tarihi: 25.10.2024 [https://www.marketresearchfuture.com]
Mirón-Barroso, S., Domènech,. E. B., & Trigueros, S. (2021). Nanotechnology-Based .Strategies to Overcome Current Barriers in Gene Delivery. International Journal of Molecular Sciences, 22(16), 8537. https://doi.org/10.3390/ijms22168537
Muyldermans, S. (2013). Nanobodies: Natural Single-Domain Antibodies. Annual Review of Biochemistry, 82(1), 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449
Na, K., & Bae, Y. H. (2002). Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharmaceutical research, 19(5), 681–688. https://doi.org/10.1023/a:1015370532543
Nishiyama, N., Matsumura, Y., & Kataoka, K. (2016). Development of polymeric micelles for targeting intractable cancers. Cancer Science, 107(7), 867–874. https://doi.org/10.1111/cas.12960
Pandey, P., Purohit, D., & Dureja, H. (2018). Nanosponges –A Promising Novel Drug Delivery System. Recent Patents on Nanotechnology, 12(3), 180–191. https://doi.org/10.2174/1872210512666180925102842
Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural Nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127. https://doi.org/10.1016/j.nantod.2014.09.009
Patel, S. S., & Patel, P. N. (2023). A brief review on nanorobotics applications in medicine and future prospects. Asian Journal of Research in Pharmaceutical Sciences, 13(1), 19–28. https://doi.org/10.52711/2231-5659.2023.00004
Patel, S. S., & Patel, P. N. (2023). A brief review on nanorobotics applications in medicine and future prospects. Asian Journal of Research in Pharmaceutical Sciences, 13(1), 19–28. https://doi.org/10.52711/2231-5659.2023.00004Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
Prole, D. L., & Taylor, C. W. (2019). A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling. BMC Biology, 17(1), 41. https://doi.org/10.1186/s12915-019-0662-4
Pugliese, R., & Gelain, F. (2017). Peptidic Biomaterials: From Self-Assembling to Regenerative Medicine. Trends in Biotechnology, 35(2), 145–158. https://doi.org/10.1016/j.tibtech.2016.09.004
Qiu, Q., Ding, X., Chen, J., Chen, S., & Wang, J. (2023). Nanobiotechnology-based treatment strategies for malignant relapsed glioma. Journal of controlled release : official journal of the Controlled Release Society, 358, 681–705. https://doi.org/10.1016/j.jconrel.2023.05.016
Qiu, Q., Ding, X., Chen, J., Chen, S., & Wang, J. (2023). Nanobiotechnology-based treatment strategies for malignant relapsed glioma. Journal of controlled release : official journal of the Controlled Release Society, 358, 681–705. https://doi.org/10.1016/j.jconrel.2023.05.016Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied microbiology and biotechnology, 94(2), 287–293. https://doi.org/10.1007/s00253-012-3969-4
Ram, P., Vivek, K., & Kumar, S. P. (2014). Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology, 13(6), 705–713. https://doi.org/10.5897/AJBX2013.13554
Rasmussen, S. G. F., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., DeVree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., & Kobilka, B. K. (2011). Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature, 469(7329), 175–180. https://doi.org/10.1038/nature09648
Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E., Shu, X., Zhang, J., & Tsien, R. Y. (2017). The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 42(2), 111–129. https://doi.org/10.1016/j.tibs.2016.09.010
Saeed, R. M., Dmour, I., & Taha, M. O. (2020). Stable Chitosan-Based Nanoparticles Using Polyphosphoric Acid or Hexametaphosphate for Tandem Ionotropic/Covalent Crosslinking and Subsequent Investigation as Novel Vehicles for Drug Delivery. Frontiers in Bioengineering and Biotechnology, 24, 4-8. https://doi.org/10.3389/fbioe.2020.00004
Sahoo, S. K., & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug discovery today, 8(24), 1112–1120. https://doi.org/10.1016/S1359-6446(03)02903-9
Schudel, A., Francis, D. M., & Thomas, S. N. (2019). Material design for lymph node drug delivery. Nature Reviews Materials, 4(6), 415–428. https://doi.org/10.1038/s41578-019-0110-7
Shahcheraghi, N., Golchin, H., Sadri, Z., Tabari, Y., Borhanifar, F., & Makani, S. (2022). Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech, 12(3), 65. https://doi.org/10.1007/s13205-021-03108-9
Sharp, P. A., & Langer, R. (2011). Promoting Convergence in Biomedical Science. Science, 333(6042), 527–527. https://doi.org/10.1126/science.1205008
Shrestha, S., & Bhattacharya, S. (2020). Versatile Use of Nanosponge in the Pharmaceutical Arena: A Mini-Review. Recent Patents on Nanotechnology, 14(4), 351–359. https://doi.org/10.2174/1872210514999200901200558
Siontorou, C. G. (2013). Nanobodies as novel agents for disease diagnosis and therapy. International Journal of Nanomedicine, 8, 4215–4227. https://doi.org/10.2147/IJN.S39428
Stewart-Ornstein, J., & Lahav, G. (2016). Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. Cell Reports, 14(7), 1800–1811. https://doi.org/10.1016/j.celrep.2016.01.045
Sudhakar, C., Upadhyay, N., Verma, A., Jain, A., Narayana Charyulu, R., & Jain, S. (2015). Nanomedicine and Tissue Engineering. Nanotechnology Applications for Tissue Engineering, 1–19. https://doi.org/10.1016/B978-0-323-32889-0.00001-7
Swain, P. S., Rajendran, D., Rao, S. B. N., & Dominic, G. (2015). Preparation and effects of nano mineral particle feeding in livestock: A review. Veterinary World, 8(7), 888–891. https://doi.org/10.14202/vetworld.2015.888-891
Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23–38. https://doi.org/10.1007/s11192-007-1897-3
Tang, L., Fu, C., Zhang, A., Li, X., Cao, Y., Feng, J., Liu, H., Dong, H., & Wang, W. (2023). Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomaterials science, 11(3), 791–812. https://doi.org/10.1039/d2bm01790c
Towards Healthcare. (2024, Ekim). Nanomedicine Market Size Envisioned at USD 562.93 Billion by 2032. Erişim tarihi: 25.10.2024 [https://www.towardshealthcare.com/insights/nanomedicine-market-sizing#:~:text=The%20nanomedicine%20market%20size%20achieved,10.1%25%20from%202024%20to%202032]
Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie (International ed. in English), 48(1), 60–103. https://doi.org/10.1002/anie.200802248
Viktor, F., Emese, B., Geza, J., & Istvan, A. (2016). Formulation aspects of nanopharmaceuticals and nanotechnology I Introduction, biopharmaceutical aspects. Acta Pharmaceutica Hungarica, 86(2), 43–52.
Wang, J., & Shapira, P. (2009). Partnering with universities: a good choice for nanotechnology start-up firms? Small Business Economics, 38(2), 197–215. https://doi.org/10.1007/s11187-009-9248-9
Wang, Y., Fan, Z., Shao, L., Kong, X., Hou, X., Tian, D., Sun, Y., Xiao, Y., & Yu, L. (2016). Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine, 11, 3287–3303. https://doi.org/10.2147/ijn.s107194
Wang, T., Zhang, X., Xu, Y., Xu, Y., Zhang, Y., & Zhang, K. (2022). Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. Journal of materials chemistry. B, 10(37), 7361–7383. https://doi.org/10.1039/d2tb00600f
Xian, H., Zhang, Y., Yu, C., & Wang, Y. (2023). Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics, 15(2), 620. https://doi.org/10.3390/pharmaceutics15020620
Yamada, Y., & Harashima, H. (2014). A method for screening mitochondrial fusogenic envelopes for use in mitochondrial drug delivery. Methods in molecular biology (Clifton, N.J.), 1141, 57–66. https://doi.org/10.1007/978-1-4939-0363-4_2
Youssef, F. S., El-Banna, H. A., Elzorba, H. Y., & Galal, A. M. (2019). Application of some nanoparticles in the field of veterinary medicine. International Journal of Veterinary Science and Medicine, 7(1), 78–93. https://doi.org/10.1080/23144599.2019.1691379
Yu, S., Xiong, G., Zhao, S., Tang, Y., Tang, H., Wang, K., Liu, H., Lan, K., Bi, X., & Duan, S. (2020). Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). International Journal of Molecular Medicine, 47(2), 444–454. https://doi.org/10.3892/ijmm.2020.4817
Zhao, L., Liu, C., Xing, Y., He, J., O’Doherty, J., Huang, W., & Zhao, J. (2021). Development of a 99mTc-Labeled Single-Domain Antibody for SPECT/CT Assessment of HER2 Expression in Breast Cancer. Molecular pharmaceutics, 18(9), 3616–3622. https://doi.org/10.1021/acs.molpharmaceut.1c00569
Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.