Analysis of Drying Kinetics and Mathematical Modelling of Peanut Pods using Sunlight, Hot Air, and Microwaves Drying Processes
DOI:
https://doi.org/10.24925/turjaf.v13i2.368-375.7192Keywords:
Peanut, Drying, Math Modelling, Microwave, Hot airAbstract
This study analyzed the drying kinetics of peanut pods employing sun, hot air, and microwave drying techniques, and evaluated their mathematical modeling. The findings demonstrated that sun-drying decreased the moisture content from 26.47% to 8-10% over a duration surpassing 72 hours. Hot air drying at temperatures of 60°C, 80°C, and 100°C, commencing with an initial moisture content of 29.92%, necessitated 810 minutes, 360 minutes, and 660 minutes, respectively. Microwave drying, commencing with an initial moisture content of 23.01%, required 40 minutes, 45 minutes, and 60 minutes at belt velocities of 3 mm/s, 4.9 mm/s, and 6.2 mm/s, respectively, at 300 W. At 400 W, the durations were 24 minutes, 30 minutes, and 40 minutes, respectively. All drying kinetics curves exhibited decreasing rates characteristic of agro-food products. Mathematical modeling analysis identified the Midilli model as the most appropriate, succeeded by the Page, Henderson, and Pabis models, for characterizing moisture loss during the sun, hot air, and belt microwave drying of peanut pods.
References
Abraham, T. F., Edoun, M., Kuitche, A., & Zeghmati, B., (2014). Etude Experimentale Du Sechage De La Mangue En Regime Intermittent.
Akpinar, E. K., Bicer, Y., & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of food engineering, 59(1), 99-104.Ayensu, A., & Asiedu-Bondzie, V. (1986). Solar drying with convective self-flow and energy storage. Solar & Wind Technology, 3(4), 273-279.
Akoto, E. Y., Klu, Y. A., Lamptey, M., Asibuo, J. Y., Heflin, M., Phillips, R., ... & Chen, J. (2018). Solar Drying: A Means of Improving the Quality of Peanuts in Ghana. Peanut Science, 45(1), 56-66.
Babalis, S., Papanicolaou, E., & Belessiotis, V. (2017). Fundamental mathematical relations of solar drying systems. Solar Drying Technology: Concept, Design, Testing, Modeling, Economics, and Environment, 89-175.
Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. Journal of food engineering, 47(4), 295-301.
Belghit, A., Kouhila, M., & Boutaleb, B. (1999a). Experimental study of drying kinetics of sage in a drying tunnel working in forced convection. Journal of Renewable Energies, 2(1), 17-26.
Beyza, Ö.E., (2018). Hicaz narı (Punica granatum L.) tanelerin kızılötesi, mikrodalga ve konvektif kurutma yöntemleriyle kurutulması. 75 p.
Boldor, D., Sanders, T.H., Swartzel, K.R., & Farkas, B.E. (2005). A Model for Temperature And Moisture Distribution During Continuous Microwave Drying. Journal of Food Process Engineering, 28, 68-87.
Bonazzi, C., & Bimbenet, J. J. (2003). Séchage des produits alimentaires. Principes. Techniques de l'Ingénieur. Agroalimentaire (France), (3000).
Can, A. (2000), Drying kinetics of pumpkinseeds. Int. J. Energy Res., 24: 965-975. https://doi.org/10.1002/1099-114X(200009)24:11<965::AID-ER635>3.0.CO;2-W
Chiewchan, N., Mujumdar, A.S. and Devahastin, S., (2015). Application of drying technology to control aflatoxins in foods and feeds: a review. Drying Technology, 33(14): 1700-1707.
Delwiche, S., Shupe, W., Pearson, J., Sanders, T. and Wilson, D., (1986). Microwave vacuum drying effect on peanut quality. Peanut Science, 13(1): 21-27.
El-Sayed, A., El-Samahy, S., Radwan, S. and Abo ElSoud, A., (2006). Solar drying of peanut pods sing two different types of solar dryers. Journal of Soil Sciences and Agricultural Engineering, 31(12): 7709-7728.
FAO (2022). FaoStat Database. Available from: http://faostat.fao.org.
Fokone, A.T., Edoun, M., Kuitche, A. and Kengne, C., (2013). Modélisation de la Cinétique de Séchage de la Carotte (Daucus carota)[Modeling of Drying Kinetics of Fresh Carrot (Daucus carota)]. International Journal of Innovation and Applied Studies, 4(2): 375-381.
Goneli, A. L., Araujo, W. D., Hartmann, C. P., Martins, E. A., & Oba, G. C. (2017). Drying kinetics of peanut kernels in thin layers. Engenharia Agrícola, 37, 994-1003.
Hürdoğan, E., Çerçi, K. N., Saydam, D. B., & Ozalp, C. (2022). Experimental and modeling study of peanut drying in a solar dryer with a novel type of a drying chamber. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 5586-5609.
John, C. S., & Otten, L. (1989). Thin-layer microwave drying of peanuts. Canadian Agricultural Engineering, 31(2), 265-270.
Karathanos, V. T., & Belessiotis, V. G. (1997). Sun and artificial air drying kinetics of some agricultural products. Journal of Food Engineering, 31(1), 35-46.
Karmas, E., (1980). Techniques for measurement of moisture content of foods. Food Technology (USA).
Krzyzanowski, F.C., West, S.H., Neto, F. and de Barros, J., (2006). Drying peanut seed using air ambient temperature at low relative humidity. Revista Brasileira de Sementes, 28(3): 1-5.
Lamyae L. et al., (2015). Caractérisation et lissage de la cinétique de séchage Solaire Convectif de Thymus satureioides conservé. 5ème Séminaire Maghrébin sur les Sciences et les Technologies du Séchage.
Mariem, S. B., & Mabrouk, S. B. (2017). Cinétique de séchage et courbe caractéristique de séchage d'une couche mince de tomate. In Proceedings of the International Congres on Thermal Processes/Journée Internationale de Thermique-JITH2017.
Midilli, A. and Kucuk, H., (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy conversion and Management, 44(7): 1111-1122.
Midilli, A., Kucuk, H. and Yapar, Z., (2002). A new model for single-layer drying. Drying technology, 20(7): 1503-1513.
Morey, R.V. and Li, H., (1984). Thin-layer equation effects on deep-bed drying prediction. Trans. ASAE, 27(6): 1924-1928.
Moukhtar Lati , S.B., Hamza Bouguettaia, and Bechki, D.M.e.D., (2015). Etude expérimentale de la cinétique de séchage de la pomme de terre. Université Kasdi Merbah, Ouargla, Algérie.
Ahmad, M., & Mirani, A. A. (2012). Heated air drying of groundnut. Pakistan Journal of Agricultural Research, 25(4).
Ndukwu, M. C. (2009). Effect of drying temperature and drying air velocity on the drying rate and drying constant of cocoa bean. Agricultural Engineering International: CIGR Journal.
Nguyen, T. H. (2015). Étude expérimentale et modélisation du procédé de séchage des végétaux (Doctoral dissertation, Université de Bretagne Sud).
Schirack, A. V., Sanders, T. H., & Sandeep, K. P. (2007). Effect of processing parameters on the temperature and moisture content of microwave‐blanched peanuts. Journal of food process engineering, 30(2), 225-240.
Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1981). A model for ear-corn drying.
Tayel, S., Ghanem, T., El-Kholy, M. M., & Hamad, T. O. (2015). Drying Behavior of Peanuts Using A Rotary Dryer. Misr Journal of Agricultural Engineering, 32(3), 1143-1160.
Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.
Xie, Y., Lin, Y., Li, X., Yang, H., Han, J., Shang, C., ... & Lu, F. (2023). Peanut drying: Effects of various drying methods on drying kinetic models, physicochemical properties, germination characteristics, and microstructure. Information Processing in Agriculture, 10(4), 447-458.
Yağcıoğlu, A., Değirmencioğlu, A., & Çağatay, F. (1999). Drying characteristics of laurel leaves under different drying conditions. In 7th Int Congress on Agricultural Mechanization and Enerdy (pp. 565-569).
Ertekin, O., & Yaldiz, C. (2001). Thin layer solar drying of some different vegetables. Drying Technology, 19(3), 583-596.
Yang, C. Y., Fon, D. S., & Lin, T. T. (2007). Simulation and validation of thin layer models for peanut drying. Drying technology, 25(9), 1515-1526.
Young, J. H., Whitaker, T. B., Blankenship, P. D., Brusewitz, G. H., Troeger, J. M., Steele, J. L., & Person, N. K. (1982). Effect of oven drying time on peanut moisture determination. Transactions of the ASAE, 25(2), 491-0496.
Zhang, Q., & Litchfield, J. B. (1991). An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying technology, 9(2), 383-395.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.