Improvement of Bacillus subtilis Natto Viability by Alginate and Xanthan Gum as a Wall Material
DOI:
https://doi.org/10.24925/turjaf.v12is4.2777-2782.7218Keywords:
Bacillus subtilis natto, Alginate, Xanthan gum, EncapsulationAbstract
In this study, Bacillus subtilis natto was encapsulated in alginate, either coated with or mixed with xanthan gum as a supplemental component. The encapsulated bacteria were then evaluated for their survival in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The results showed that B. subtilis natto biomass had a thrombolytic ability compared to the control sample. The viability of encapsulated B. subtilis natto was improved in which alginate 2.5% (w/v) had a high encapsulation efficiency, and there was no difference between the samples with or without the xanthan gum supplement. In the SGF and SIF tests, the viability of B. subtilis in samples supplemented with xanthan gum was higher than in samples that contained only alginate. Additionally, there was no significant difference in viability between the samples that mixed xanthan gum with alginate and those that were coated with it. The results indicated that adding xanthan gum is necessary to increase alginate's protective effect on B. subtilis natto.
References
Afzaal, M., Khan, A. U., Saeed, F., Ahmed, A., Ahmad, M. H., Maan, A. A., . . . Hussain, S. (2019). Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr, 7(12), 3931-3940. https://doi.org/10.1002/fsn3.1254
Chavarri, M., Maranon, I., Ares, R., Ibanez, F. C., Marzo, F., & Villaran Mdel, C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol, 142(1-2), 185-189. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022
Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr, 61(9), 1515-1536. https://doi.org/10.1080/10408398.2020.1761773
Hatanaka, M., Nakamura, Y., Maathuis, A. J., Venema, K., Murota, I., & Yamamoto, N. (2012). Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Benef Microbes, 3(3), 229-236. https://doi.org/10.3920/BM2012.0016
Hong, H. A., Huang, J. M., Khaneja, R., Hiep, L. V., Urdaci, M. C., & Cutting, S. M. (2008). The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol, 105(2), 510-520. https://doi.org/10.1111/j.1365-2672.2008.03773.x
Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci, M., . . . Cutting, S. M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol, 160(2), 134-143. https://doi.org/10.1016/j.resmic.2008.11.002
Ju, S., Cao, Z., Wong, C., Liu, Y., Foda, M. F., Zhang, Z., & Li, J. (2019). Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation, 5(4). https://doi.org/10.3390/fermentation5040092
Khorshidi, M., Heshmati, A., Taheri, M., Karami, M., & Mahjub, R. (2021). Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci Nutr, 9(7), 3942–3953. https://doi.org/10.1002/fsn3.2398
Kusuktham, B., Prasertgul, J., & Srinun, P. (2013). Morphology and Property of Calcium Silicate Encapsulated with Alginate Beads. Silicon, 6(3), 191-197. https://doi.org/10.1007/s12633-013-9173-z
Lampe, B. J., & English, J. C. (2016). Toxicological assessment of nattokinase derived from Bacillus subtilis var. natto. Food Chem Toxicol, 88, 87–99. https://doi.org/10.1016/j.fct.2015.12.025
Lieu, D. M., Thuy Hang, H. T., Quyen, N. T. T., Luan, N. T., Kim Ngan, L. T., Ly, N. T., . . . Ly, D. T. K. (2019). Study on the effect of calcium-alginate and whey protein on the survival rate of Bifidobacterium bifidum in mayonnaise. Vietnam Journal of Science and Technology, 57(3B). doi:10.15625/2525-2518/57/3b/14090
Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16(10), 1190-1195. https://doi.org/10.1016/j.idairyj.2005.10.005
Moharam, M. E., El-Bendary, M. A., El-Beih, F., Hassanin Easa, S. M., Abo Elsoud, M. M., Azzam, M. I., & Elgamal, N. N. (2019). Optimization of fibrinolytic enzyme production by newly isolated Bacillus subtilis Egy using central composite design. Biocatalysis and Agricultural Biotechnology, 17, 43-50. https://doi.org/10.1016/j.bcab.2018.11.003
My Dong, L., Thi Hanh Quyen, L., Duc Thang, T., & Thi Kim Thuy, D. (2020). The Effects of Extrusion and Internal Emulsion Microencapsulation Methods on the Viability of Lactobacillus acidophilus. Journal of Human, Environment, and Health Promotion, 6(1), 1-5. doi:10.29252/jhehp.6.1.1
Nie, G., Liu, N., Zhang, E., Zhao, R., Zhang, X., Zhu, X., . . . Yue, W. (2017). Preparation of a novel mixed milk with nattokinase produced by Bacillus subtilis (natto). Journal of Food Processing and Preservation, 41(6). https://doi.org/10.1111/jfpp.13284
Padhmavathi, V., Shruthy, R., & Preetha, R. (2021). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05179-1
Pinontoan, R., Sanjaya, A., & Jo, J. (2021). Fibrinolytic characteristics of Bacillus subtilis G8 isolated from natto. Bioscience of Microbiota, Food and Health, 40(3), 144-149.
Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawala, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis journal, 4, 1-4.
Ramos, P. E., Silva, P., Alario, M. M., Pastrana, L. M., Teixeira, J. A., Cerqueira, M. A., & Vicente, A. A. (2018). Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 77, 8-16. https://doi.org/10.1016/j.foodhyd.2017.08.031
Rather, S. A., Akhter, R., Masoodi, F. A., Gani, A., & Wani, S. M. (2017). Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT - Food Science and Technology, 83, 50-58. https://doi.org/10.1016/j.lwt.2017.04.036
Raus, R. A., Nawawi, W. M. F. W., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 16(3), 280-306.
Shu, G., He, Y., Chen, L., Song, Y., Cao, J., & Chen, H. (2018). Effect of Xanthan(-)Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage. Polymers (Basel), 10(6). https://doi.org/10.3390/polym10060588
Singh, M., Sharma, D., Chauhan, R., & Goel, G. (2019). Skimmed Milk-Based Encapsulation for Enhanced Stability and Viability of Lactobacillus gastricus BTM 7 Under Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins, 11(3), 850-856. https://doi.org/10.1007/s12602-018-9472-1
Singhvi, G., Hans, N., Shiva, N., & Kumar Dubey, S. (2019). Xanthan gum in drug delivery applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications (pp. 121-144). https://doi.org/10.1016/B978-0-12-817055-7.00005-4
Sohail, A., Turner, M. S., Coombes, A., Bostrom, T., & Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int J Food Microbiol, 145(1), 162-168. https://doi.org/10.1016/j.ijfoodmicro.2010.12.007
Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. (1987). A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia, 43, 1110-1111.
Tu, L., He, Y., Yang, H., Wu, Z., & Yi, L. (2015). Preparation and characterization of alginate-gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J Biomater Sci Polym Ed, 26(12), 735-749. https://doi.org/10.1080/09205063.2015.1056075
Vaziri, A. S., Alemzadeh, I., Vossoughi, M., & Khorasani, A. C. (2018). Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr Polym, 199, 266-275. https://doi.org/10.1016/j.carbpol.2018.07.002
Wang, P., Gao, X., Li, Y., Wang, S., Yu, J., & Wei, Y. (2020). Bacillus natto regulates gut microbiota and adipose tissue accumulation in a high-fat diet mouse model of obesity. Journal of Functional Foods, 68. https://doi.org/10.1016/j.jff.2020.103923
Xiao, Y., Han, C., Yang, H., Liu, M., Meng, X., & Liu, B. (2020). Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions. Int J Biol Macromol, 148, 238-247. https://doi.org/10.1016/j.ijbiomac.2020.01.113
Zhang, C., Wang, C., Zhao, S., & Xiu, Z. (2021). Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. Biotechnol Lett, 43(3), 677-690. https://doi.org/10.1007/s10529-020-03055-0
Zhang, J., Bilal, M., Liu, S., Zhang, J., Lu, H., Luo, H., . . . Zhao, Y. (2020). Isolation, Identification and Antimicrobial Evaluation of Bactericides Secreting Bacillus subtilis Natto as a Biocontrol Agent. Processes, 8(3). https://doi.org/10.3390/pr8030259
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.