Improvement of Bacillus subtilis Natto Viability by Alginate and Xanthan Gum as a Wall Material

Authors

  • Han Le Faculty of Food Science and Technology Ho Chi Minh City University of Industry and Trade 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009, Ho Chi Minh City, Vietnam Tel: +84706194434 https://orcid.org/0009-0009-6820-218X
  • Ly Vo Faculty of Food Science and Technology Ho Chi Minh City University of Industry and Trade 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009, Ho Chi Minh City, Vietnam Tel: +84706194434 https://orcid.org/0009-0005-2588-2219
  • Nhi Kieu Faculty of Food Science and Technology Ho Chi Minh City University of Industry and Trade 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009, Ho Chi Minh City, Vietnam Tel: +84706194434 https://orcid.org/0009-0002-0909-3330
  • Thuy Dang 2Department of Plant Cell Technology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-4212-6942
  • Dong Lieu Faculty of Food Science and Technology Ho Chi Minh City University of Industry and Trade 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009, Ho Chi Minh City, Vietnam Tel: +84706194434 https://orcid.org/0000-0003-2836-5290

DOI:

https://doi.org/10.24925/turjaf.v12is4.2777-2782.7218

Keywords:

Bacillus subtilis natto, Alginate, Xanthan gum, Encapsulation

Abstract

In this study, Bacillus subtilis natto was encapsulated in alginate, either coated with or mixed with xanthan gum as a supplemental component. The encapsulated bacteria were then evaluated for their survival in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The results showed that B. subtilis natto biomass had a thrombolytic ability compared to the control sample. The viability of encapsulated B. subtilis natto was improved in which alginate 2.5% (w/v) had a high encapsulation efficiency, and there was no difference between the samples with or without the xanthan gum supplement. In the SGF and SIF tests, the viability of B. subtilis in samples supplemented with xanthan gum was higher than in samples that contained only alginate. Additionally, there was no significant difference in viability between the samples that mixed xanthan gum with alginate and those that were coated with it. The results indicated that adding xanthan gum is necessary to increase alginate's protective effect on B. subtilis natto.

References

Afzaal, M., Khan, A. U., Saeed, F., Ahmed, A., Ahmad, M. H., Maan, A. A., . . . Hussain, S. (2019). Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr, 7(12), 3931-3940. https://doi.org/10.1002/fsn3.1254

Chavarri, M., Maranon, I., Ares, R., Ibanez, F. C., Marzo, F., & Villaran Mdel, C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol, 142(1-2), 185-189. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022

Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr, 61(9), 1515-1536. https://doi.org/10.1080/10408398.2020.1761773

Hatanaka, M., Nakamura, Y., Maathuis, A. J., Venema, K., Murota, I., & Yamamoto, N. (2012). Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Benef Microbes, 3(3), 229-236. https://doi.org/10.3920/BM2012.0016

Hong, H. A., Huang, J. M., Khaneja, R., Hiep, L. V., Urdaci, M. C., & Cutting, S. M. (2008). The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol, 105(2), 510-520. https://doi.org/10.1111/j.1365-2672.2008.03773.x

Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci, M., . . . Cutting, S. M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol, 160(2), 134-143. https://doi.org/10.1016/j.resmic.2008.11.002

Ju, S., Cao, Z., Wong, C., Liu, Y., Foda, M. F., Zhang, Z., & Li, J. (2019). Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation, 5(4). https://doi.org/10.3390/fermentation5040092

Khorshidi, M., Heshmati, A., Taheri, M., Karami, M., & Mahjub, R. (2021). Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci Nutr, 9(7), 3942–3953. https://doi.org/10.1002/fsn3.2398

Kusuktham, B., Prasertgul, J., & Srinun, P. (2013). Morphology and Property of Calcium Silicate Encapsulated with Alginate Beads. Silicon, 6(3), 191-197. https://doi.org/10.1007/s12633-013-9173-z

Lampe, B. J., & English, J. C. (2016). Toxicological assessment of nattokinase derived from Bacillus subtilis var. natto. Food Chem Toxicol, 88, 87–99. https://doi.org/10.1016/j.fct.2015.12.025

Lieu, D. M., Thuy Hang, H. T., Quyen, N. T. T., Luan, N. T., Kim Ngan, L. T., Ly, N. T., . . . Ly, D. T. K. (2019). Study on the effect of calcium-alginate and whey protein on the survival rate of Bifidobacterium bifidum in mayonnaise. Vietnam Journal of Science and Technology, 57(3B). doi:10.15625/2525-2518/57/3b/14090

Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16(10), 1190-1195. https://doi.org/10.1016/j.idairyj.2005.10.005

Moharam, M. E., El-Bendary, M. A., El-Beih, F., Hassanin Easa, S. M., Abo Elsoud, M. M., Azzam, M. I., & Elgamal, N. N. (2019). Optimization of fibrinolytic enzyme production by newly isolated Bacillus subtilis Egy using central composite design. Biocatalysis and Agricultural Biotechnology, 17, 43-50. https://doi.org/10.1016/j.bcab.2018.11.003

My Dong, L., Thi Hanh Quyen, L., Duc Thang, T., & Thi Kim Thuy, D. (2020). The Effects of Extrusion and Internal Emulsion Microencapsulation Methods on the Viability of Lactobacillus acidophilus. Journal of Human, Environment, and Health Promotion, 6(1), 1-5. doi:10.29252/jhehp.6.1.1

Nie, G., Liu, N., Zhang, E., Zhao, R., Zhang, X., Zhu, X., . . . Yue, W. (2017). Preparation of a novel mixed milk with nattokinase produced by Bacillus subtilis (natto). Journal of Food Processing and Preservation, 41(6). https://doi.org/10.1111/jfpp.13284

Padhmavathi, V., Shruthy, R., & Preetha, R. (2021). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05179-1

Pinontoan, R., Sanjaya, A., & Jo, J. (2021). Fibrinolytic characteristics of Bacillus subtilis G8 isolated from natto. Bioscience of Microbiota, Food and Health, 40(3), 144-149.

Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawala, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis journal, 4, 1-4.

Ramos, P. E., Silva, P., Alario, M. M., Pastrana, L. M., Teixeira, J. A., Cerqueira, M. A., & Vicente, A. A. (2018). Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 77, 8-16. https://doi.org/10.1016/j.foodhyd.2017.08.031

Rather, S. A., Akhter, R., Masoodi, F. A., Gani, A., & Wani, S. M. (2017). Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT - Food Science and Technology, 83, 50-58. https://doi.org/10.1016/j.lwt.2017.04.036

Raus, R. A., Nawawi, W. M. F. W., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 16(3), 280-306.

Shu, G., He, Y., Chen, L., Song, Y., Cao, J., & Chen, H. (2018). Effect of Xanthan(-)Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage. Polymers (Basel), 10(6). https://doi.org/10.3390/polym10060588

Singh, M., Sharma, D., Chauhan, R., & Goel, G. (2019). Skimmed Milk-Based Encapsulation for Enhanced Stability and Viability of Lactobacillus gastricus BTM 7 Under Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins, 11(3), 850-856. https://doi.org/10.1007/s12602-018-9472-1

Singhvi, G., Hans, N., Shiva, N., & Kumar Dubey, S. (2019). Xanthan gum in drug delivery applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications (pp. 121-144). https://doi.org/10.1016/B978-0-12-817055-7.00005-4

Sohail, A., Turner, M. S., Coombes, A., Bostrom, T., & Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int J Food Microbiol, 145(1), 162-168. https://doi.org/10.1016/j.ijfoodmicro.2010.12.007

Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. (1987). A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia, 43, 1110-1111.

Tu, L., He, Y., Yang, H., Wu, Z., & Yi, L. (2015). Preparation and characterization of alginate-gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J Biomater Sci Polym Ed, 26(12), 735-749. https://doi.org/10.1080/09205063.2015.1056075

Vaziri, A. S., Alemzadeh, I., Vossoughi, M., & Khorasani, A. C. (2018). Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr Polym, 199, 266-275. https://doi.org/10.1016/j.carbpol.2018.07.002

Wang, P., Gao, X., Li, Y., Wang, S., Yu, J., & Wei, Y. (2020). Bacillus natto regulates gut microbiota and adipose tissue accumulation in a high-fat diet mouse model of obesity. Journal of Functional Foods, 68. https://doi.org/10.1016/j.jff.2020.103923

Xiao, Y., Han, C., Yang, H., Liu, M., Meng, X., & Liu, B. (2020). Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions. Int J Biol Macromol, 148, 238-247. https://doi.org/10.1016/j.ijbiomac.2020.01.113

Zhang, C., Wang, C., Zhao, S., & Xiu, Z. (2021). Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. Biotechnol Lett, 43(3), 677-690. https://doi.org/10.1007/s10529-020-03055-0

Zhang, J., Bilal, M., Liu, S., Zhang, J., Lu, H., Luo, H., . . . Zhao, Y. (2020). Isolation, Identification and Antimicrobial Evaluation of Bactericides Secreting Bacillus subtilis Natto as a Biocontrol Agent. Processes, 8(3). https://doi.org/10.3390/pr8030259

Downloads

Published

31.12.2024

How to Cite

Le, H., Vo, L., Kieu, N., Dang, T., & Lieu, D. (2024). Improvement of Bacillus subtilis Natto Viability by Alginate and Xanthan Gum as a Wall Material. Turkish Journal of Agriculture - Food Science and Technology, 12(s4), 2777–2782. https://doi.org/10.24925/turjaf.v12is4.2777-2782.7218