Integrating Millets into Modern Agriculture: A Strategic Pathway to Advancing Sustainability, Climate Resilience, and Nutritional Security
DOI:
https://doi.org/10.24925/turjaf.v13i2.529-538.7273Keywords:
Drought, High temperature , Food security , Hidden hunger , Climate-smart agricultureAbstract
Millets, including pearl millet, foxtail millet, and finger millet, among others, offer a complementary solution to traditional staple crops such as wheat, rice and maize, particularly in the context of climate change. Known for their resilience to heat, drought, and poor soil conditions, millets can be integrated into existing agricultural systems to enhance food security and nutritional diversity in regions increasingly affected by climate change. While millets may not replace staple crops, their cultivation alongside these staples provide several benefits, including improved nutritional outcomes and reduced environmental impact. Pearl millet, for instance, is rich in iron and zinc, addressing micronutrient deficiencies that are common in many developing regions. Finger millet’s high calcium content makes it a valuable addition to diets in areas with limited access to dairy. These grains thrive in marginal environments, contributing to more sustainable farming practices with a lower environmental footprint. Incorporating millets into agricultural systems can reduce dependency on water-intensive crops, lower the risk of crop failure, and provide a buffer against the impacts of climate change. By diversifying cropping systems, millets could help to stabilize food production and improve nutritional outcomes without displacing the critical role of traditional staples in global diets. To maximize the benefits of millets, efforts should focus on improving value chains, supporting smallholder farmers, and increasing consumer awareness. Moreover, targeted research and supportive policies are critical to unlocking their full potential and integrating them effectively into global food systems. As the world faces the dual challenges of climate change and malnutrition, millets offer a viable pathway to enhance resilience and sustainability in agriculture, complementing staple crops and enriching global food systems.
References
Ajithkumar, I. P., & Panneerselvam, R. (2014). ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth. under drought stress. Cell biochemistry and biophysics, 68, 587-595. https://doi.org/10.1007/s12013-013-9746-x
Altaf, M. T., Liaqat, W., Nadeem, M. A., & Baloch, F. S. (2023). Recent trends and applications of omics-based knowledge to end global food hunger. In Sustainable Agriculture in the Era of the OMICs Revolution (pp. 381-397). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-15568-0_18
Amit Tomar, A.K., Mishra, S.P., Singh, H.H., Khan, Prachi Patel & Singh, R.P. (2023). INTERNATIONAL YEAR OF MILLETS-2023: PROMOTING MILLETS AS THE NUTRITIOUS CEREALS. ICAR-Krishi Vigyan Kendra, Gajraula, Amroha, Directorate of Extension, SVPUAT, Modipuram, Available at https://justagriculture.in/files/magazine/2023/april/008%20INTERNATIONAL%20YEAR%20OF%20MILLETS-2023.pdf
Anitha, S., Govindaraj, M., & Kane‐Potaka, J. (2020). Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chemistry, 97(1), 74-84. https://doi.org/10.1002/cche.10227
Anitha, S., Givens, D.I., Botha, R., Kane-Potaka, J., Sulaiman, N.L.B., Tsusaka, T.W., Subramaniam, K., Rajendran, A., Parasannanavar, D.J. & Bhandari, R.K. (2021). Calcium from finger millet—a systematic review and meta-analysis on calcium retention, bone resorption, and in vitro bioavailability. Sustainability, 13(16): 8677. https://doi.org/10.3390/su13168677
Antony Ceasar, S., & Maharajan, T. (2022). The role of millets in attaining United Nation’s sustainable developmental goals. Plants, People, Planet, 4(4), 345-349. https://doi.org/10.1002/ppp3.10254
Antony Ceasar, S., Maharajan, T., Ajeesh Krishna, T. P., Ramakrishnan, M., Victor Roch, G., Satish, L., & Ignacimuthu, S. (2018). Finger millet [Eleusine coracana (L.) Gaertn.] improvement: current status and future interventions of whole genome sequence. Frontiers in plant science, 9, 1054. https://doi.org/10.3389/fpls.2018.01054
Babele, P. K., Kudapa, H., Singh, Y., Varshney, R. K., & Kumar, A. (2022). Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health. Frontiers in Plant Science, 13, 902536. https://doi.org/10.3389/fpls.2022.902536
Baldermann, S., Blagojević, L., Frede, K., Klopsch, R., Neugart, S., Neumann, A., ... & Schreiner, M. (2016). Are neglected plants the food for the future?. Critical Reviews in Plant Sciences, 35(2), 106-119. https://doi.org/10.1080/07352689.2016.1201399
Bandyopadhyay, T., Muthamilarasan, M., & Prasad, M. (2017). Millets for next generation climate-smart agriculture. Frontiers in plant science, 8, 1266. https://doi.org/10.3389/fpls.2017.01266
Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C., ... & Devos, K. M. (2012). Reference genome sequence of the model plant Setaria. Nature biotechnology, 30(6), 555-561. https://doi.org/10.1038/nbt.2196
Bidinger, F. R., Nepolean, T., Hash, C. T., Yadav, R. S., & Howarth, C. J. (2007). Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop science, 47(3), 969-980. https://doi.org/10.2135/cropsci2006.07.0465
Bisht, A., Joshi, S., & Srivastava, S. (2022). Small millets: An overview. Small Millet Grains: The Superfoods in Human Diet, 1-13. https://doi.org/10.1007/978-981-16-9306-9_1
Bisoffi, S., Ahrné, L., Aschemann-Witzel, J., Báldi, A., Cuhls, K., DeClerck, F., ... & Brunori, G. (2021). COVID-19 and sustainable food systems: what should we learn before the next emergency. Frontiers in Sustainable Food Systems, 5, 650987. https://doi.org/10.3389/fsufs.2021.650987
Borelli, T., Hunter, D., Padulosi, S., Amaya, N., Meldrum, G., de Oliveira Beltrame, D. M., ... & Tartanac, F. (2020). Local solutions for sustainable food systems: The contribution of orphan crops and wild edible species. Agronomy, 10(2), 231. https://doi.org/10.3390/agronomy10020231
Calder, P. C. (2020). Nutrition, immunity and COVID-19. BMJ nutrition, prevention & health, 3(1), 74. https://doi.org/10.1136/bmjnph-2020-000085
Ceasar, A. (2022). Genome-editing in millets: current knowledge and future perspectives. Molecular Biology Reports, 49(1), 773-781. https://doi.org/10.1007/s11033-021-06975-w
Chataut, G., Bhatta, B., Joshi, D., Subedi, K., & Kafle, K. (2023). Greenhouse gases emission from agricultural soil: A review. Journal of Agriculture and Food Research, 11, 100533. https://doi.org/10.1016/j.jafr.2023.100533
Chellapilla, T. S., Ambawat, S., & Gurjar, N. R. (2022). Millets: Role and Responses Under Abiotic Stresses. In Sustainable Remedies for Abiotic Stress in Cereals (pp. 171-207). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5121-3_8
Choudhary, P., Shukla, P., & Muthamilarasan, M. (2023). Genetic enhancement of climate-resilient traits in small millets: A review. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14502
Dayakar Rao, B., Bhaskarachary, K., Arlene Christina, G. D., Sudha Devi, G., Vilas, A. T., & Tonapi, A. (2017). Nutritional and health benefits of millets. ICAR_Indian Institute of Millets Research (IIMR) Rajendranagar, Hyderabad, 2.
Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G., & Priyadarisini, V. B. (2014). Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. Journal of food science and technology, 51, 1021-1040. https://doi.org/10.1007/s13197-011-0584-9
Djanaguiraman, M., Prasad, P. V. V., Stewart, Z. P., Perumal, R., Min, D., Djalovic, I., & Ciampitti, I. A. (2020). Agroclimatology of oats, barley, and minor millets. Agroclimatology: Linking Agriculture to Climate, 60, 243-277.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
Goron, T. L., & Raizada, M. N. (2015). Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Frontiers in plant science, 6, 157. https://doi.org/10.3389/fpls.2015.00157
Gull, A., Jan, R., Nayik, G. A., Prasad, K., & Kumar, P. (2014). Significance of finger millet in nutrition, health and value added products: a review. Magnesium (mg), 130(32), 120.
Guo, L., Qiu, J., Ye, C., Jin, G., Mao, L., Zhang, H., ... & Fan, L. (2017). Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature communications, 8(1), 1031. https://doi.org/10.1038/s41467-017-01067-5
Hatakeyama, M., Aluri, S., Balachadran, M. T., Sivarajan, S. R., Patrignani, A., Grüter, S., ... & Shimizu, K. K. (2018). Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Research, 25(1), 39-47. https://doi.org/10.1093/dnares/dsx036
Hittalmani, S., Mahesh, H. B., Shirke, M. D., Biradar, H., Uday, G., Aruna, Y. R., ... & Mohanrao, A. (2017). Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC genomics, 18, 1-16. https://doi.org/10.1186/s12864-017-3850-z
Hossain, A., Mottaleb, K. A., Maitra, S., Mitra, B., Ahmed, S., Sarker, S., ... & Laing, A. M. (2021). Conservation agriculture: Next-generation, climate resilient crop management practices for food security and environmental health. In Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture (pp. 585-609). Singapore: Springer Singapore.
Jain, N., Arora, P., Tomer, R., Mishra, S. V., Bhatia, A., Pathak, H., ... & Singh, J. P. (2016). Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment, 542, 551-561. https://doi.org/10.1016/j.scitotenv.2015.10.073
Jayakodi, M., Madheswaran, M., Adhimoolam, K., Perumal, S., Manickam, D., Kandasamy, T., ... & Natesan, S. (2019). Transcriptomes of Indian barnyard millet and barnyardgrass reveal putative genes involved in drought adaptation and micronutrient accumulation. Acta Physiologiae Plantarum, 41, 1-11. https://doi.org/10.1007/s11738-019-2855-4
Jukanti, A. K., Gowda, C. L., Rai, K. N., Manga, V. K., & Bhatt, R. K. (2016). Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics. Food Security, 8, 307-329. https://doi.org/10.1007/s12571-016-0557-y
Kencharaddi, H. G., Suresha, P. G., Soregaon, C. D., & Kumar, A. (2024). Breeding and Molecular Approaches for Drought-Resilient Crops. In Climate-Resilient Agriculture (pp. 227-265). Apple Academic Press. https://doi.org/10.1201/9781003455271-9
Kheya, S. A., Talukder, S. K., Datta, P., Yeasmin, S., Rashid, M. H., Hasan, A. K., ... & Islam, A. M. (2023). Millets: The future crops for the tropics-Status, challenges and future prospects. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e22123
Kumar, A., Rani, M., Mani, S., Shah, P., Singh, D. B., Kudapa, H., & Varshney, R. K. (2021). Nutritional significance and antioxidant-mediated antiaging effects of finger millet: Molecular insights and prospects. Frontiers in Sustainable Food Systems, 5, 684318. https://doi.org/10.3389/fsufs.2021.684318
Kumar, A., Tomer, V., Kaur, A., Kumar, V., & Gupta, K. (2018). Millets: a solution to agrarian and nutritional challenges. Agriculture & food security, 7(1), 1-15. https://doi.org/10.1186/s40066-018-0183-3
Kumar, B., Singh, A. K., Bahuguna, R. N., Pareek, A., & Singla‐Pareek, S. L. (2023). Orphan crops: A genetic treasure trove for hunting stress tolerance genes. Food and Energy Security, 12(2), e436. https://doi.org/10.1002/fes3.436
Kumar, R. R., Singh, S. P., Rai, G. K., Krishnan, V., Berwal, M. K., Goswami, S., ... & Praveen, S. (2022). Iron and zinc at a cross-road: a trade-off between micronutrients and anti-nutritional factors in pearl millet flour for enhancing the bioavailability. Journal of Food Composition and Analysis, 111, 104591. https://doi.org/10.1016/j.jfca.2022.104591
Kumar, S., Dikshit, N., Singh, M., & Rana, J. C. (2016). Foxtail and barnyard millets. Broadening the Genetic Base of Grain Cereals, 257-275. https://doi.org/10.1007/978-81-322-3613-9_10
Kumar, V., Yadav, M., Awala, S.K., Valombola, J.S., Saxena, M.S., Ahmad, F. & Saxena, S.C. (2024). Millets: A nutritional powerhouse for ensuring food security. Planta, 260(4): 101. https://doi.org/10.1007/s00425-024-04533-9
Li, P., & Brutnell, T. P. (2011). Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of experimental botany, 62(9), 3031-3037. https://doi.org/10.1093/jxb/err096
Liaqat, W., Altaf, M. T., Barutçular, C., & Yasmin, S. (2023). Bioenergy Crops in the Perspective of Climate Change. In Biotechnology and Omics Approaches for Bioenergy Crops (pp. 1-27). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-4954-0_1
Liaqat, W., Altaf, M. T., Barutçular, C., Mohamed, H. I., Ali, Z., & Khan, M. O. (2024). Drought stress in sorghum: physiological tools, breeding technology, Omics approaches and Genomic-assisted breeding-A review. Journal of Soil Science and Plant Nutrition, 1-27. https://doi.org/10.1007/s42729-024-01702-3
Liaqat, W., Barutcular, C., Farooq, M., Ahmad, H., Jan, M., Ahmad, Z., ... & Li, M. (2022). Climate change in relation to agriculture: A review. Spanish Journal of Agricultural Research, 20(2). https://doi.org/10.5424/sjar/2022202-17742
Lu, T. L. D. (2002). A green foxtail (Setaria viridis) cultivation experiment in the Middle Yellow River Valley and some related issues. Asian Perspectives, 1-14. https://doi.org/10.1353/asi.2002.0007
Mabhaudhi, T., Chimonyo, V.G.P., Hlahla, S., Massawe, F., Mayes, S., Nhamo, L.& Modi, A.T. (2019). Prospects of orphan crops in climate change. Planta, 250, 695-708. https://doi.org/10.1007/s00425-019-03129-y
Mazumder, S., Bhattacharya, D., Lahiri, D., Moovendhan, M., Sarkar, T. & Nag, M. (2024). Harnessing the nutritional profile and health benefits of millets: a solution to global food security problems. Critical Reviews in Food Science and Nutrition.1-22. https://doi.org/10.1080/10408398.2024.2417801
Meena, R. P., Joshi, D., Bisht, J. K., & Kant, L. (2021). Global scenario of millets cultivation. Millets and millet technology, 33-50. https://doi.org/10.1007/978-981-16-0676-2_2
Mishra, A., Bruno, E., & Zilberman, D. (2021). Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Science of the Total Environment, 754, 142210. https://doi.org/10.1016/j.scitotenv.2020.142210
Mohanapriya, B., Shanmugam, A., Francis, N., Indhu, S. M., & Ravikesavan, R. (2024). Breeding barnyard millet for abiotic stress tolerance. In Genetic improvement of Small Millets (pp. 493-511). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7232-6_24
Moharil, M. P., Ingle, K. P., Jadhav, P. V., Gawai, D. C., Khelurkar, V. C., & Suprasanna, P. (2019). Foxtail millet (Setaria italica L.): potential of smaller millet for future breeding. Advances in Plant Breeding Strategies: Cereals: Volume 5, 133-163. https://doi.org/10.1007/978-3-030-23108-8_4
Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture & Food Security, 10(1), 1-25. https://doi.org/10.1186/s40066-021-00318-5
Muthamilarasan, M., & Prasad, M. (2021). Small millets for enduring food security amidst pandemics. Trends in Plant Science, 26(1), 33-40. https://doi.org/10.1016/j.tplants.2020.08.008
Muthamilarasan, M., Dhaka, A., Yadav, R., & Prasad, M. (2016). Exploration of millet models for developing nutrient rich graminaceous crops. Plant Science, 242, 89-97. https://doi.org/10.1016/j.plantsci.2015.08.023
Nadeem, F., Ahmad, Z., Ul Hassan, M., Wang, R., Diao, X., & Li, X. (2020). Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: a special perspective of responses to nitrogen and phosphate limitations. Frontiers in plant science, 11, 187. https://doi.org/10.3389/fpls.2020.00187
Nagaraj, N., Basavaraj, G., Rao, P. P., Bantilan, C., & Haldar, S. (2013). Sorghum and pearl millet economy of India: Future outlook and options. Economic and political weekly, 74-81.
Onipe, O. O., & Ramashia, S. E. (2022). Finger millet seed coat—a functional nutrient-rich cereal by-product. Molecules, 27(22), 7837. https://doi.org/10.3390/molecules27227837
Patan, S. S. V. K., Vallepu, S., Shaik, K. B., Shaik, N., Adi Reddy, N. R. Y., Terry, R. G., ... & Hausman, J. F. (2024). Drought resistance strategies in minor millets: a review. Planta, 260(1), 29. https://doi.org/10.1007/s00425-024-04427-w
Pei, J., Umapathy, V. R., Vengadassalapathy, S., Hussain, S. F. J., Rajagopal, P., Jayaraman, S., ... & Gopinath, K. (2022). A review of the potential consequences of pearl millet (Pennisetum glaucum) for diabetes mellitus and other biomedical applications. Nutrients, 14(14), 2932. https://doi.org/10.3390/nu14142932
Prasad, P. V. V., Djanaguiraman, M., Stewart, Z. P., & Ciampitti, I. A. (2020). Agroclimatology of maize, sorghum, and pearl millet. Agroclimatology: linking agriculture to climate, 60, 201-241. https://doi.org/10.2134/agronmonogr60.2016.0005
Priyadarshini, P., & Abhilash, P. C. (2021). Agri-food systems in India: Concerns and policy recommendations for building resilience in post COVID-19 pandemic times. Global Food Security, 29, 100537. https://doi.org/10.1016/j.gfs.2021.100537
Rajendrakumar, P. (2022). Omics of climate change on nutritional quality of small millets. Omics of climate resilient small millets, 317-335. https://doi.org/10.1007/978-981-19-3907-5_16
Rasul, G. (2021). A framework for addressing the twin challenges of COVID-19 and climate change for sustainable agriculture and food security in South Asia. Frontiers in Sustainable Food Systems, 5, 679037. https://doi.org/10.3389/fsufs.2021.679037
Rodríguez, J. P., Rahman, H., Thushar, S., & Singh, R. K. (2020). Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Frontiers in genetics, 11, 49. https://doi.org/10.3389/fgene.2020.00049
Sachdev, N., Goomer, S., & Singh, L. R. (2021). Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. Journal of the Science of Food and Agriculture, 101(3), 831-842. https://doi.org/10.1002/jsfa.10716
Saleh, A. S., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive reviews in food science and food safety, 12(3), 281-295. https://doi.org/10.1111/1541-4337.12012
Santra, D. K., Khound, R., & Das, S. (2019). Proso millet (Panicum miliaceum L.) breeding: Progress, challenges and opportunities. Advances in Plant Breeding Strategies: Cereals: Volume 5, 223-257. https://doi.org/10.1007/978-3-030-23108-8_6
Satyavathi, C.T. & Bhat, B.V. (2024). Mainstreaming Millets for Food and Nutritional Security. In Transformation of Agri-Food Systems (pp. 77-90). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8014-7_7
Saxena, R., Vanga, S. K., Wang, J., Orsat, V., & Raghavan, V. (2018). Millets for food security in the context of climate change: A review. Sustainability, 10(7), 2228. https://doi.org/10.3390/su10072228
Shanker, N. (2024). Millets: The Ancient Grain for Modern Health. In Millets: The Multi-Cereal Paradigm for Food Sustainability (pp. 31-42). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64237-1_2
Shen, R., Ma, Y., Jiang, L., Dong, J., Zhu, Y., & Ren, G. (2018). Chemical composition, antioxidant, and antiproliferative activities of nine Chinese proso millet varieties. Food and agricultural immunology, 29(1), 625-637. https://doi.org/10.1080/09540105.2018.1428283
Singh, R. K., Muthamilarasan, M., & Prasad, M. (2017). Foxtail millet: an introduction. The foxtail millet genome, 1-9. https://doi.org/10.1007/978-3-319-65617-5_1
Srivastava, S. & Arya, C. (2021). Millets: malnutrition and nutrition security. Millets and Millet Technology, pp.81-100. https://doi.org/10.1007/978-981-16-0676-2_4
Talabi, A. O., Vikram, P., Thushar, S., Rahman, H., Ahmadzai, H., Nhamo, N., ... & Singh, R. K. (2022). Orphan crops: A best fit for dietary enrichment and diversification in highly deteriorated marginal environments. Frontiers in Plant Science, 13, 839704. https://doi.org/10.3389/fpls.2022.839704
Tiwari, A., Kesarwani, K., Sharma, A., Ghosh, T., Bisht, N., & Punetha, S. (2022). Drought stress in millets and its response mechanism. In Advances in Plant Defense Mechanisms. IntechOpen. https://doi.org/10.5772/intechopen.105942
Upadhyaya, H. D., Reddy, V. G., & Sastry, D. V. S. S. R. (2008). Regeneration guidelines finger millet.
USDA FAS. U.S. Department of Agriculture Foreign Agricultural Servis. Available at https://fas.usda.gov/data/production/commodity/0459100 (accessed on 01-09-2024).
Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., ... & Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature biotechnology, 35(10), 969-976. https://doi.org/10.1038/nbt.3943
Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402
Ye, C. Y., & Fan, L. (2021). Orphan crops and their wild relatives in the genomic era. Molecular Plant, 14(1), 27-39. https://doi.org/10.1016/j.molp.2020.12.013
Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., ... & Wang, J. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature biotechnology, 30(6), 549-554. https://doi.org/10.1038/nbt.2195
Zou, C., Li, L., Miki, D., Li, D., Tang, Q., Xiao, L., ... & Zhang, H. (2019). The genome of broomcorn millet. Nature communications, 10(1), 436. https://doi.org/10.1038/s41467-019-08409-5
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.