Effect of Honeydew Secreted by Aphis gossypii Glover (Hemiptera: Aphididae) on Fungal Growth

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is4.2817-2822.7301

Keywords:

Aphid, Beauveria, Biological control, Honeydew, Trichoderma

Abstract

Honeydew is a sugar-rich, sticky substance secreted by many plant-feeding insect species from the order of Hemiptera and Lepidoptera. Aphids (Hemiptera: Aphididae), on the other hand, feed on nitrogen-poor, carbohydrate-rich phloem sap and excrete excess carbohydrate as honeydew from their anus. The aphids, constituting the main material of the study were sampled from the Catalpa bungei C. A. Mey (Bignoniaceae) tree located in the central campus of Niğde Ömer Halisdemir University and then preparation procedures were carried out for species identification under laboratory conditions. According to the identification key organized according to the host plant, the samples were identified as Aphis gossypii Glover. The honeydew of A. gossypii Glover, known as the cotton aphid, was collected from the host plant and the effects of two different concentrations of the honeydew (10 and 20 g/L) on fungal growth were determined using both solid and liquid media. Different Trichoderma strains and Beauveria bassiana were used to examine fungal growth. Fungal growth in the prepared nutrient media was determined as the amount of biomass (gram). The honeydew content (phenolic substance, sugar and amino acid amounts) was determined and supported by FT-IR analyses. The growth of fungal species in the PDA medium, which was preferred as the control medium, and the medium containing honeydew was compared. It has been determined that fungal growth is better in the medium containing honeydew, and therefore honeydew increases fungal growth. With this study, it is predicted that aphid honeydew can support the growth of both fungal agents used in biological control and plant pathogens.

References

Ajayı, O., & Dewar, A. M. (1982). The effect of barley yellow dwarf virus on honeydew production by the cereal aphids, Sitobion avenae and Metopolophium dirhodum. Annals of applied Biology, 100(2), 203-212. https://doi.org/10.1111/j.1744-7348.1982.tb01932.x

Ali, J., Abbas, A., Abbas, S., Ji, Y., Khan, K. A., Ghramh, H. A., ... & Chen, R. (2024). Honeydew: A keystone in insect–plant interactions, current insights and future perspectives. Journal of Applied Entomology. https://doi.org/10.1111/jen.13269

Álvarez-Pérez, S., Lievens, B., & de Vega, C. (2024). Floral nectar and honeydew microbial diversity and their role in biocontrol of insect pests and pollination. Current Opinion in Insect Science, 61, 101138. https://doi.org/10.1016/j.cois.2023.101138

Anjos, O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2015). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food chemistry, 169, 218-223. https://doi.org/10.1016/j.foodchem.2014.07.138

Blackman, R., & Eastop, V. (2024). Aphids on the World’s plants: An online identification and information guide. http://www.aphidsonworldsplants.info.

Blanchard, S., Verheggen, F., Van De Vreken, I., Richel, A., & Detrain, C. (2022). Combined elevation of temperature and CO2 impacts the production and sugar composition of aphid honeydew. Journal of chemical ecology, 48(9), 772-781. https://doi.org/10.1007/s10886-022-01385-z

Blüthgen, N., Gottsberger, G., & Fiedler, K. (2004). Sugar and amino acid composition of ant‐attended nectar and honeydew sources from an Australian rainforest. Austral Ecology, 29(4), 418-429. https://doi.org/10.1111/j.1442-9993.2004.01380.x

Bonser, R. O. B., Wright, P. J., Bament, S., & Chukwu, U. O. (1998). Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis. Ecological Entomology, 23(1), 15-21. https://doi.org/10.1046/j.1365-2311.1998.00103.x

Buitenhuis, R., McNeil, J. N., Boivin, G., & Brodeur, J. (2004). The role of honeydew in host searching of aphid hyperparasitoids. Journal of Chemical Ecology, 30, 273-285. https://doi.org/10.1023/B:JOEC.0000017977.39957.97

Dix, N. J. (1979). Inhibition of fungi by gallic acid in relation to growth on leaves and litter. Transactions of the British Mycological Society, 73(2), 329-336. https://doi.org/10.1016/S0007-1536(79)80117-5

Dixon, A. F. G. (2012). Aphid ecology an optimization approach. Springer Science & Business Media.

Dyer, L. A., Philbin, C. S., Ochsenrider, K. M., Richards, L. A., Massad, T. J., Smilanich, A. M., ... & Jeffrey, C. S. (2018). Modern approaches to study plant–insect interactions in chemical ecology. Nature Reviews Chemistry, 2(6), 50-64. https://doi.org/10.1038/s41570-018-0009-7

Evans, E. W., & England, S. (1996). Indirect interactions in biological control of insects: pests and natural enemies in alfalfa. Ecological applications, 6(3), 920-930. https://doi.org/10.2307/2269495

Fernández de Bobadilla, M. F., Ramírez, N. M., Calvo-Agudo, M., Dicke, M., & Tena, A. (2024). Honeydew management to promote biological control. Current Opinion in Insect Science, 61, 101151. https://doi.org/10.1016/j.cois.2023.101151

Fiebig, M., Poehling, H. M., & Borgemeister, C. (2004). Barley yellow dwarf virus, wheat, and Sitobion avenae: a case of trilateral interactions. Entomologia Experimentalis et Applicata, 110(1), 11-21. https://doi.org/10.1111/j.0013-8703.2004.00115.x

Fischer, M. K., & Shingleton, A. W. (2001). Host plant and ants influence the honeydew sugar composition of aphids. Functional Ecology, 15(4), 544-550. https://doi.org/10.1046/j.0269-8463.2001.00550.x

Fischer, M. K., Hoffmann, K. H., & Völkl, W. (2001). Competition for mutualists in an ant–homopteran interaction mediated by hierarchies of ant attendance. Oikos, 92(3), 531-541. https://doi.org/10.1034/j.1600-0706.2001.920314.x

Fischer, M. K., Völkl, W., & Hoffmann, K. H. (2005). Honeydew production and honeydew sugar composition of polyphagous black bean aphid, Aphis fabae (Hemiptera: Aphididae) on various host plants and implications for ant-attendance. European Journal of Entomology, 102(2), 155-160. https://doi.org/10.14411/eje.2005.025

Görür G., Şenol Ö., Akyıldırım Beğen, H., & Akyürek, B. (2024). Turkish aphid, www.turkishaphid.com.

Hendrix, D. L., Wei, Y. A., & Leggett, J. E. (1992). Homopteran honeydew sugar composition is determined by both the insect and plant species.

Holman, J. (2009). Host Plant Catalog of Aphids, Palearctic region. Czech Republic: Springer, Branisovska.

Karslı, A., & Şahin, Y. S. (2021). The role of fungal volatile organic compounds (FVOCs) in biological control. Turkish Journal of Biological Control, 12(1), 79-92. https://doi.org/10.31019/tbmd.818701

Kök, Ş., & Özdemir, I. (2021). Annotated systematic checklist of the aphids (Hemiptera: Aphidomorpha) of Turkey. Zootaxa, 4925(1), 1-74.

Leroy, P. D., Sabri, A., Heuskin, S., Thonart, P., Lognay, G., Verheggen, F. J., ... & Haubruge, E. (2011). Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nature communications, 2(1), 348. https://doi.org/10.1038/ncomms1347

Li, Z. J., Liu, M., Dawuti, G., Dou, Q., Ma, Y., Liu, H. G., & Aibai, S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy research, 31(7), 1039-1045. https://doi.org/10.1002/ptr.5823

Martin, J. H. (1983). The identification of common aphid pests of tropical agriculture. International journal of pest management, 29(4), 395-411. https://doi.org/10.1080/09670878309370834

Owen, D. F., & Wiegert, R. G. (1976). Do consumers maximize plant fitness?. Oikos, 488-492. https://doi.org/10.2307/3543467

Saha, S., Das, T., & Raychaudhuri, D. (2018). Myrmecophilous association between ants and aphids-an overview. World News of Natural Sciences, 20.

Tena, A., Wäckers, F. L., Heimpel, G. E., Urbaneja, A., & Pekas, A. (2016). Parasitoid nutritional ecology in a community context: The impor tance of honeydew and implications for biological control. Current Opinion in Insect Science, 14, 100-104. https://doi.org/10.1016/j.cois.2016.02.008

van Neerbos, F. A., de Boer, J. G., Salis, L., Tollenaar, W., Kos, M., Vet, L. E., & Harvey, J. A. (2020). Honeydew composition and its effect on life‐history parameters of hyperparasitoids. Ecological Entomology, 45(2), 278-289. https://doi.org/10.1111/een.12799

Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., & Hoffmann, K. H. (1999). Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483-491. https://doi.org/10.1007/s004420050751

Wäckers, F. L. (2000). Do oligosaccharides reduce the suitability of honeydew for predators and parasitoids? A further facet to the function of insect-synthesized honeydew sugars. Oikos, 90(1), 197-201. https://doi.org/10.1034/j.1600-0706.2000.900124.x

Yang, H., Dong, S., Sun, Z., Wang, Y., Luo, X., Chen, B., ... & Peng, W. (2020). Catalpa ovata G. Don. potential medicinal value of leaves. Thermal Science, 24 (3 Part A), 1713-1720. https://doi.org/10.2298/TSCI190609043Y

Zhang, Y., Zhang, S., & Xu, L. (2023). The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. npj Biofilms and Microbiomes, 9(1), 66. https://doi.org/10.1038/s41522-023-00435-y

Downloads

Published

31.12.2024

How to Cite

Olcabey Ergin, G., Bozkurt, Y., Başer, G., Yürümez Canpolat, E., Görür, G., & Öztürk, A. (2024). Effect of Honeydew Secreted by Aphis gossypii Glover (Hemiptera: Aphididae) on Fungal Growth. Turkish Journal of Agriculture - Food Science and Technology, 12(s4), 2817–2822. https://doi.org/10.24925/turjaf.v12is4.2817-2822.7301