The Effects of Nanoemulsion Film Coatings Containing Essential Oils on the Storage Quality of Sugar Beets (Beta vulgaris L.)

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is4.2853-2861.7330

Keywords:

Weight loss, Antifungal activity, Storage quality change, Polar sugar, Sugar beet

Abstract

This study was carried out under controlled conditions to determine the effects of chitosan-based nanoemulsion film coating formulations, formed using different essential oils, on storage quality of sugar beet roots during storage period. In the study, roots of Conviso Smart (KWS) sugar beet variety were coated with nanoemulsion film formulations containing thyme (Thymus vulgaris), clove (Szygium aromaticum), ginger (Zingiber officinale) and tea tree (Melaleuca alternifolia) essential oils doses of 250, 500 and 1000 ppm immediately after harvest. The roots were stored in plastic cases under controlled conditions (+ 8-10°C, 85-90% relative humidity) for 90 days. Weight loss in beet roots was determined at 30-day intervals from the start of the storage period, and at the end of the storage period, firmness, dry matter ratio, brix value, polar sugar, reducing sugar, alpha amino nitrogen and glycine betaine contents and fungal infection developments in beet roots were also evaluated. The film coating applications significantly affected postharvest weight and quality losses in sugar beet roots. The applications significantly reduced roots weight loss during storage compared to the control. Although the polar sugar ratios were higher in film coated roots compared to the control, alpha-amino nitrogen, glycine betaine, and reducing sugar contents showed significant decreases. White mold and green mold infections on the roots were significantly decreased, especially with high dose film coating applications. The highest dry matter ratio, brix values and firmness were obtained from film coatings containing 1000 ppm cinnamon and thyme essential oils. While polar sugar ratio was higher in root which film coated compared to the control, alpha amino nitrogen, glycine betaine and reducing sugar contents showed significant decreases. White mold and green mold infections developing on root showed significant decreases especially with film coating applications applied at high doses. The study concluded that coating sugar beet roots with nanoemulsion film formulations containing essential oils can significantly reduce, weight and quality losses, as well as fungal disease development, during the storage period.

References

Ada, R. (2010). Farklı zamanlarda ve teknikle hasat edilen şeker pancarında (Beta vulgaris saccharifera l.) silolama süresinin verim ve kalite üzerine etkisi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilm Dalı Doktora Tezi, 122 p.

Alpos, M.A., & Bayogan, E. R. V. (2023). Effects of chitosan coating on the post-harvest quality and antioxidant properties of sweet pepper (Capsicum annuum L.). Philipp. J. Sci., 152, 919–929.

Anonim, (2024). TÜİK http://tuikapp.tuik.gov.tr/bitkiselapp/ bitkisel.zul. Access Date: 25/10/2024.

AOAC, (1994). Association of official analytical chemists. Official methods of analysis. 16th Ed. Virginia, USA.

Babaeei, B., Abdolahian Noghabi, M., Jahad Akbar, M. R., & Yousef Abadi, V. (2013). The appropriate method for determining of sugar content in sugar beet produced under drought. Salinity and Normal Conditions. J. Sugar Beet, 291, 53-59.

Campbell, L. G., Windels, C. E., Fugate, K. K., & Brantner, J. R. (2014). Postharvest losses associated with severity of Rhizoctonia crown and root rot of sugarbeet at harvest. J. Sugar Beet Res., 51,31-51.

Can Çetin, A. (2012). Effects of edible chitosan coating on quality parameters of pomegranate (Punica granatum) arils. Master Thesis, Middle East Technical University, Ankara.

Cheng, S., & Xingfeng S. (2011). In vivo antifungal activities of the tea tree oil vapor against Botrytis cinerea. International Conference on New Technology of Agricultural. Presented at the 2011 International Conference on New Technology of Agricultural Engineering (ICAE), IEEE, Zibo, China, 949-951.

Cirit, Y., Şanlı, A., & Tosun, B. (2019). Sugar Beet (Beta vulgaris L.) Quality changes during pile storage: effects of pile management. 1 st International Congress of the Turkish Journal of Agriculture - Food Science and Technology, Congress Book, 456-463.

Demirel, D., & Akınerdem, F. (2016). Farklı zamanlarda hasat edilen ve tarla silosunda bekletilen şeker pancarında silolama süresinin verim ve kaliteye etkisi. Selçuk Tarım Bilimleri Dergisi, 3(2), 143-156.

English, W. (2020). Long term storage of sugar beets and the role of temperature. Swedish University of Agricultural Sciences, Faculty of Landscape Architecture, Horticulture and Crop Production Science, 14.

Goy, R. C., Morias, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farmacogn. 26, 122–127.

Hirschmuller, H., & Kroecher, R. (1968). Sucrose determination in sugar beets and sugar cane by ısotope dilution. Zeit. f. d. Zukerind, 18(9), 475-482, 587-592, 649-655.

Honda, S., Takeda, K., & Kakehi, K. (1980). Studies of the structures of the carbohydrate components in plant oligosaccharide glycosides by the dithioacetol method. Carbohydrate Research, 73, 135-143.

Iber, B. T., Kasan, N. A., Torsabo, D., & Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. J. Renew. Mater. 10, 1097.

Kavas, M. F., & Leblebici, M. J. (2004). Kalite ve işletme kontrol laboratuvarları el kitabı. Türkiye Şeker Fabrikaları A.Ş. Genel Müdürlüğü Yayın No: 224, 77-207, Ankara.

Kennedy, D. O., & Wightman, E. L. (2011). Herbal extracts and phytchemicals: plant secondary metabolites and the enhancement human brain function. American Society for Nutrition Adv. Nutr., 2, 32-50.

Kenter, C., & Hoffmann, C. M. (2009). Changes in the processing quality of sugar beet (Beta vulgaris L.) during long‐term storage under controlled conditions. International journal of food science & technology, 44(5), 910-917.

Kubadinow, N., & Wieninger, L. (1972). Compt. Rent. XIV. Ass. Comm. Int. Tech. Sucr. (CITS) Brüssel,1971, 539.

Kurşunatan, M. (2019). Bazı uçucu yağ uygulamalarının şeker pancarı (Beta vulgaris var. saccharifera l.)’nın arazi performansı ile şeker enzim aktivitelerine etkileri. Isparta Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi (Basılmış).

Macwan, S. R., Dabhi, B. K., Aparnathi, K. D., & Prajapati, J.B. (2016). Essential oils of herbs and spices: their antimicrobial activity and application in preservation of food. International Journal of Current Microbiology and Applied Sciences, 5(5), 885–901.

Mazaro, S. M., Citadin, I., De Gouvea, A., Luckmann, D., & Guimaraes, S. S. (2008). İnduction of phytoalexins in cotyledons of soybean in response to the derivatites of leaf surinan cherry. Ciencia Rural, Santa Marina, 38(7), 1824- 1829.

Mazid, M., Khan, T. A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants, Biology and Medicine, 3(2), 232-249.

Mc Ginnis, R. A. (1982). Chapter IV: Beet storage. In: Beet-sugar technology. Third edition. Beet sugar development foundation, Denver, 81-99..

Mesa, A., Mythatha, G. S. S., Lodi, R. S., Ravuri, S., & Balli, R. (2021). Chitosan nanoparticles: an overview on preparation, characterization and biomedical applications. Nanotechnology for advances in medical microbiology, Springer: Singapur, 393–427.

Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M. M. F. A., Ihsan, A. U., Shumzaid, M., Kakar, M. U., Khan, T. M., & Akabar, M.D. (2019). Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol. 129, 827–843.

Nazzaro, F., Fratianni, F., Coppola, R., & De Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals, 10(4), 1–20.

Nedomová, Š., Kumbár, V., Pavloušek, P., Pytel, R., Začal, J., & Buchar, J. (2016). Influence of harvest day on changes in mechanical properties of grape berries. Potravinarstvo, 10(1), 181-187.

Ok, F. Z. (2020). Hasat öncesi uygulanan doğal ve sentetik sürgün gelişimi engelleyicilerinin patates (Solanum tuberosum L.)’in verim ve depo kalitesine etkileri. Isparta Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi (Basılmış).

Ok, F. Z., Şanlı, A., Cirit, Y., & Tosun, B. (2022). Effect of essential oil applications on sugar beet (Beta vulgaris L.) root quality during storage. Turkish Journal of Agriculture - Food Science and Technology, 10(11), 2087-2095. doi: https://doi.org/10.24925/turjaf.v10i11.2087-2095.4939

Pummer, S., Dantzler, W. H., Lien, Y. H., Moeckel, G. W., Völker, K. & Silbernagl, S. (2000). Reabsorption of betainein Henle’s loops of rat kidney in vivo. Am. J. Physiol. Renal. Physiol, 278,434–439.

Sadeghiyan, S. Y., Mohammadian, R., Taleghani, D. F., & Noghabi, M. A. (2004). Relation between sugarbeet traits and water use efficiency in water stressed genotypes. Pakistan Journal of Biological Sciences, 7(7), 1236-2141.

Şanlı, A. (2012). Depo koşullarında patates (Solanum tuberosum L.) yumrularının sürmesi üzerine karvon içeren uçucu yağların etkisi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).

Tülek, S., & Dolar, F. S. (2011). Havuçlarda görülen depo hastalıkları ve yönetimi. GOÜ, Ziraat Fakültesi Dergisi, 28(2), 187-198.

Van der Poel, P. W., Schiweck, H., & Schwartz, T. (1998). Sugar technology. Beet and Cane Sugar Manufacture. Berlin: Dr. Albert Bartens KG.

Vukov, K., & Hangyál, K. (1985). Sugar beet storage. Sugar Technol. Rev., 12, 143-265.

Yang, Y., & Ge, L. (2021). Sensor coating employed to preliminarily evaluate the banana ripeness. Colloids Surf. A Physicochem. Eng. Asp., 616, 126057.

Yonghua, L., Xingfeng, S., Jiayu, X., Yingying, W., Feng, X., & Hongfei, W. (2017). Effects and possible mechanism of tea tree oil against Botrytis cinerea and Penicillium expansum in vitro and in vivo test Can. J. Microbiol., 63, 219-227.

Zhang, D. F., Xing, Y. G., Xu, Q. L., Che, Z. M., Li, X. H., Chen, Z. W., & Li, Z. G. (2012). Formulation optimization and protective effect of biologically coated chitosan fresh retention agent. Güneydoğu Üniv. Nat. Bilim. Ed., 31 , 68–72.

Zhang, W., Goksen, G., Zhou, Y., Yang, J., Khan, M. R., Ahmad, N., & Fei, T. (2023). Application of chitosan-cinnamon essential oil composite coating to prevent post-harvest apple diseases. Gıdalar, 12, 3518.

Zhang, X., Guo, Y., Guo, L., Jiang, H., & Ji, Q. (2018). In vitro evaluation of antioxidant and antimicrobial activities of Melaleuca alternifolia essential oil. BioMed Res. Int., 8, 10.

Zrenner, R., Schuler, K., & Sonnewald, U. (1996). Soluble acid invertase determines the hexose-to-sucrose ratio in cold stored potato tubers. Planta, 198, 246-252.

Downloads

Published

31.12.2024

How to Cite

Ok, F. Z., & Şanlı, A. (2024). The Effects of Nanoemulsion Film Coatings Containing Essential Oils on the Storage Quality of Sugar Beets (Beta vulgaris L.). Turkish Journal of Agriculture - Food Science and Technology, 12(s4), 2853–2861. https://doi.org/10.24925/turjaf.v12is4.2853-2861.7330