Synthesis of Modified Poly (glycidyl methacrylate) (PGMA) Hydrogels, and Investigation of Their Potential in Dye Removal

Authors

  • Kübra Gülcemal Kastamonu University, Faculty of Engineering and Architecture Department of Environmental Engineering, Kuzeykent Campus, 37500, Kastamonu, Türkiye https://orcid.org/0009-0005-2533-2305
  • Kutalmış Gökkuş Kastamonu University, Faculty of Engineering and Architecture Department of Environmental Engineering, Kuzeykent Campus, 37500, Kastamonu, Türkiye https://orcid.org/0000-0002-4016-4283

DOI:

https://doi.org/10.24925/turjaf.v13i2.453-463.7382

Keywords:

Poly(glycidyl methacrylate), isotherm, adsorption, bromophenol blue

Abstract

Anthropogenic activities with increasing population lead the pollution of ecosystems. Over one-third of the world's water resources are utilized for agricultural, domestic, and industrial activities, resulting in contamination by synthetic, and geogenic compounds such as dyes, fertilizers, pesticides, and heavy metals. Among these pollutants, dyes are particularly noteworthy due to their extensive use across various sectors, making them one of the leading contributors to water pollution. For this reason, dyes are one of the most important pollutants that cause water pollution. Therefore, the adsorption of Bromophenol blue (BPB) was studied in this study. Firstly, PGMA gels were produced by polymerizing of glycidyl methacrylate (GMA) monomer. Secondly, the PGMA gels were modified to prepare the new adsorbents for the adsorption of BPB dye. Thirdly, the adsorption of BPB dye was carried out. The batch adsorption method was used. The optimum adsorbent amount, initial BPB concentration, pH, and temperature parameters for PGMA gels were determined. The adsorption mechanism between modified PGMA gels, and BPB dye was elucidated by Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. As a result, it was seen that modified PGMA gels showed good performance in the adsorption of BPB.

References

Abubakar, S. I., & Ibrahim, M. B. (2018). Adsorption of bromophenol blue and bromothymol blue dyes onto raw maize cob. Bayero Journal of Pure and Applied Sciences, 11(1), 273-281. DOI: 10.4314/bajopas.v11i1.45S

Ahmed, M. A., & Abou-Gamra, Z. M. (2016). Mesoporous MgO nanoparticles as a potential sorbent for removal of fast orange and bromophenol blue dyes. Nanotechnology for Environmental Engineering, 1, 1-11. DOI: https://doi.org/10.1007/s41204-016-0010-7

Akpomie, K. G., Adegoke, K. A., Oyedotun, K. O., Ighalo, J. O., Amaku, J. F., Olisah, C., ... & Conradie, J. (2024). Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery, 14(13), 13629-13657. DOI: https://doi.org/10.1007/s13399-022-03592-w

Al-Ghouti, M., Khraisheh, M. A. M., Ahmad, M. N. M., & Allen, S. (2005). Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. Journal of Colloid and Interface Science, 287(1), 6-13. DOI: https://doi.org/10.1016/j.jcis.2005.02.002

Altaher, H., Khalil, T. E., & Abubeah, R. (2014). The effect of dye chemical structure on adsorption on activated carbon: a comparative study. Coloration Technology, 130(3), 205-214. DOI: https://doi.org/10.1111/cote.12086

Alver, E., & Metin, A. Ü. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 200, 59-67. DOI: https://doi.org/10.1016/j.cej.2012.06.038

Benjelloun, M., Miyah, Y., Evrendilek, G. A., Zerrouq, F., & Lairini, S. (2021). Recent advances in adsorption kinetic models: their application to dye types. Arabian Journal of Chemistry, 14(4), 103031. DOI: https://doi.org/10.1016/j.arabjc.2021.103031

Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1-3), 259-267. DOI: https://doi.org/10.1016/j.desal.2005.10.032

Chien, J. C. (1963). Kinetics of propylene polymerization catalyzed by α‐titanium trichloride–diethylaluminum chloride. Journal of Polymer Science Part A: General Papers, 1(1), 425-442. DOI: https://doi.org/10.1002/pol.1963.100010138

Chien, S., and W. Clayton. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal. DOI: https://doi.org/10.2136/sssaj1980.03615995004400020013x

Dhananasekaran, S., Palanivel, R., & Pappu, S. (2016). Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles. Journal of advanced research, 7(1), 113-124. DOI: https://doi.org/10.1016/j.jare.2015.03.003

El-Zahhar, A. A., Awwad, N. S., & El-Katori, E. E. (2014). Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. Journal of molecular liquids, 199, 454-461. DOI: https://doi.org/10.1016/j.molliq.2014.07.034

Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phys. chem, 57(385471): p. 1100-1107.

Ghaedi, M., Ghayedi, M., Kokhdan, S. N., Sahraei, R., & Daneshfar, A. (2013). Palladium, silver, , and zinc oxide nanoparticles loaded on activated carbon as adsorbent for removal of bromophenol red from aqueous solution. Journal of Industrial and Engineering Chemistry, 19(4), 1209-1217. DOI: https://doi.org/10.1016/j.jiec.2012.12.020

Gokkus, K., Sengel, S. B., Yildirim, Y., Hasanbeyoglu, S., & Butun, V. (2023). Amine-functionalised poly (glycidyl methacrylate) hydrogels for Congo red adsorption. Journal of Environmental Engineering and Science, 18(4), 204-214. DOI: https://doi.org/10.1680/jenes.23.00025

Gokkus, K., Oter, C., Amlani, M., Gur, M., & Butun, V. (2024). Preparation of versatile polymer particles and their application for elimination of bromophenol blue and phenol from aqueous environment. Desalination and Water Treatment, 318, 100402. DOI: https://doi.org/10.1016/j.dwt.2024.100402

Gürses, A., Doğar, Ç., Yalcın, M., Açıkyıldız, M., Bayrak, R., & Karaca, S. (2006). The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials, 131(1-3), 217-228. DOI: https://doi.org/10.1016/j.jhazmat.2005.09.036

Ho, Y.-S., and G. McKay (1999). Pseudo-second order model for sorption processes. Process biochemistry.

Jirekar, D. B., Pathan, A. A., & Farooqui, M. (2014). Adsorption studies of methylene blue dye from aqueous solution onto Phaseolus aureus biomaterials. Orient J Chem, 30(3), 1263-1269. DOI: http://dx.doi.org/10.13005/ojc/300342

Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 6(4), 4676-4697. DOI: https://doi.org/10.1016/j.jece.2018.06.060

Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances.

Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11): p. 2221-2295.

Lapwanit, S., Sooksimuang, T., & Trakulsujaritchok, T. (2018). Adsorptive removal of cationic methylene blue dye by kappa-carrageenan/poly (glycidyl methacrylate) hydrogel beads: preparation and characterization. Journal of environmental chemical engineering, 6(5), 6221-6230. DOI: https://doi.org/10.1016/j.jece.2018.09.050

Liu, J., Yao, S., Wang, L., Zhu, W., Xu, J., & Song, H. (2014). Adsorption of bromophenol blue from aqueous samples by novel supported ionic liquids. Journal of Chemical Technology & Biotechnology, 89(2), 230-238. DOI: https://doi.org/10.1002/jctb.4106

Mahmoodi, N. M., Salehi, R., Arami, M., & Bahrami, H. (2011). Dye removal from colored textile wastewater using chitosan in binary systems. Desalination, 267(1), 64-72. DOI: https://doi.org/10.1016/j.desal.2010.09.007

Malik, P. K. (2004). Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 113(1-3), 81-88. DOI: https://doi.org/10.1016/j.jhazmat.2004.05.022

Mashkoor, F., & Nasar, A. (2020). Magsorbents: Potential c, andidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials, 500, 166408. DOI: https://doi.org/10.1016/j.jmmm.2020.166408

Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A., & Fabregat, A. (2012). Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. Journal of environmental management, 102, 148-164. DOI: https://doi.org/10.1016/j.jenvman.2012.02.021

Mokif, L. A. (2019). Removal methods of synthetic dyes from industrial wastewater: a review. Mesopotamia Environmental Journal (mesop. environ. j) ISSN: 2410-2598, 5(1), 23-40. DOI: http://dx.doi.org/10.31759/mej.2019.5.1.0040

Moradihamedani, P. (2022). Recent advances in dye removal from wastewater by membrane technology: a review. Polymer Bulletin, 79(4), 2603-2631. DOI: https://doi.org/10.1007/s00289-021-03603-2

Morais, L. C., Freitas, O. M., Goncalves, E. P., Vasconcelos, L. T., & Beca, C. G. (1999). Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Research, 33(4), 979-988. DOI: https://doi.org/10.1016/S0043-1354(98)00294-2

Namasivayam, C., Jeyakumar, R., & Yamuna, R. T. (1994). Dye removal from wastewater by adsorption on ‘waste’Fe (III)/Cr (III) hydroxide. Waste management, 14(7), 643-648. DOI: https://doi.org/10.1016/0956-053X(94)90036-1

Navin, P. K., Kumar, S., & Mathur, M. (2018). Textile wastewater treatment: a critical review. Int J Eng Res Technol, 6(11), 1-7.

Oter, C., Gokkus, K., Gur, M., & Butun, V. (2024). Polymeric Adsorbent for the Effective Removal of Toxic Dyes from Aqueous Solutions: Equilibrium, Kinetic, and Thermodynamic Modeling. ChemistrySelect, 9(42), e202403526. DOI: https://doi.org/10.1002/slct.202403526

Radushkevich, M. (1947). The equation of the characteristic curve of the activated charcoal USSR Phys. Chem Sect, 55: p. 331.

Raman, C. D., & Kanmani, S. J. J. E. M. (2016). Textile dye degradation using nano zero valent iron: a review. Journal of Environmental Management, 177, 341-355. DOI: https://doi.org/10.1016/j.jenvman.2016.04.034

Repo, E., Warchoł, J. K., Bhatnagar, A., & Sillanpää, M. (2011). Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. Journal of colloid and interface science, 358(1), 261-267. DOI: https://doi.org/10.1016/j.jcis.2011.02.059

Sun, C. L., & Wang, C. S. (2010). Estimation on the intramolecular hydrogen-bonding energies in proteins and peptides by the analytic potential energy function. Journal of Molecular Structure: THEOCHEM, 956(1-3), 38-43. DOI: https://doi.org/10.1016/j.theochem.2010.06.020

Tempkin, M., and V. Pyzhev. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR, 12(1): p. 327.

Weber Jr, W.J., and J.C. Morris. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division.

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184. DOI: https://doi.org/10.1016/j.cis.2014.04.002

Yao, X., Ji, L., Guo, J., Ge, S., Lu, W., Chen, Y., Song, W. (2020). An Abundant Porous Biochar Material Derived from Wakame (Undaria Pinnatifida) with High Adsorption Performance for Three Organic Dyes. Bioresource Technology, 318, 124082. DOI: https://doi.org/10.1016/j.biortech.2020.124082

Downloads

Published

28.02.2025

How to Cite

Gülcemal, K., & Gökkuş, K. (2025). Synthesis of Modified Poly (glycidyl methacrylate) (PGMA) Hydrogels, and Investigation of Their Potential in Dye Removal. Turkish Journal of Agriculture - Food Science and Technology, 13(2), 453–463. https://doi.org/10.24925/turjaf.v13i2.453-463.7382

Issue

Section

Research Paper