Impact of Ultrasound-assisted Cooking and Endpoint Core Temperature on Physicochemical and Microbiological Properties, and Oxidative Stability of Beef

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i2.476-486.7470

Keywords:

Ultrasound-assisted cooking, Boiling, Endpoint core temperature, Beef, Oxidative stability

Abstract

This research aimed to investigate the impacts of different cooking methods (B; Boiling, US; Ultrasound-assisted slow boiling, UF; Ultrasound-assisted fast boiling) and endpoint core temperatures (ECT; 68°C, 74°C, and 80°C) on the oxidative stability, physicochemical, and microbiological properties of beef during refrigerated storage. The results demonstrated that UF application resulted in the lowest cooking loss (CL) at 74°C ECT. The US application caused a lower water activity (aw) compared to B. The lowest oxidation-reduction potential (ORP) levels were determined in UF, whereas the US had the highest ORP levels. Ultrasound-assisted cooking did not affect pH, yeast-mold and total mesophilic aerobic bacteria (TMAB) counts. On the other hand, UF and US caused an increase in total coliform counts compared to B. According to the results of lipid hydroperoxide (LPO) and thiobarbituric acid reactive substances (TBARS), UF application was more effective in preventing lipid oxidation compared to US and B. pH, CL, ORP, hue angle (hab) and b* values increased as the ECT increased, whereas aw, a*, chroma (C*ab) and browning index (BI; inner) values decreased. In addition, beef pieces cooked at 74°C or 80°C ECT had lower L* values, TMAB, and total coliform counts, and higher TBARS and LPO values than those cooked at 68°C ECT. 74°C was more effective in controlling microbiological changes, whereas 68°C was a better ECT for maintaining oxidative stability. In conclusion, UF has the potential to be an effective processing technology for improving oxidative stability and physicochemical properties of beef.

References

Aaslyng, M. D., Bejerholm, C., Ertbjerg, P., Bertram, H. C., & Andersen, H. J. (2003). Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food quality and preference, 14(4), 277-288. https://doi.org/10.1016/S0950-3293(02)00086-1.

Ashar, N., Ali, S., Asghar, B., Hussnain, F., Nasir, J., Nauman, K., & Badar, I. H. (2022). Application of ultrasound-assisted cooking temperature for improving physicochemical and sensory properties of broiler meat. Food Materials Research, 2(1), 1-6.

Bao, G., Niu, J., Li, S., Zhang, L., & Luo, Y. (2022). Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. Ultrasonics Sonochemistry, 82, 105864. https://doi.org/10.1016/j.ultsonch.2021.105864.

Bejerholm, C., & Aaslyng, M. D. (2004). The influence of cooking technique and core temperature on results of a sensory analysis of pork—Depending on the raw meat quality. Food quality and preference, 15(1), 19-30. https://doi.org/10.1016/S0950-3293(03)00018-1.

Broncano, J. M., Petrón, M. J., Parra, V., & Timón, M. L. (2009). Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat science, 83(3), 431-437. https://doi.org/10.1016/j.meatsci.2009.06.021.

Campo, M. M., Muela, E., Olleta, J. L., Moreno, L. A., Santaliestra-Pasías, A. M., Mesana, M. I., & Sañudo, C. (2013). Influence of cooking method on the nutrient composition of Spanish light lamb. Journal of food composition and analysis, 31(2), 185-190. https://doi.org/10.1016/j.jfca.2013.05.010.

Cauble, R. N., Ball, J. J., Zorn, V. E., Reyes, T. M., Wagoner, M. P., Coursen, M. M., ... & Sawyer, J. T. (2021). Characteristics of pork muscles cooked to varying end-point temperatures. Foods, 10(12), 2963. https://doi.org/10.3390/foods10122963.

Cichoski, A. J., da Silva, J. S., Leães, Y. S. V., Robalo, S. S., Dos Santos, B. A., Reis, S. R., ... & Campagnol, P. C. B. (2021). Effects of ultrasonic-assisted cooking on the volatile compounds, oxidative stability, and sensory quality of mortadella. Ultrasonics Sonochemistry, 72, 105443. https://doi.org/10.1016/j.ultsonch.2020.105443.

Cichoski, A. J., Rampelotto, C., Silva, M. S., de Moura, H. C., Terra, N. N., Wagner, R., ... & Barin, J. S. (2015). Ultrasound-assisted post-packaging pasteurization of sausages. Innovative Food Science & Emerging Technologies, 30, 132-137. https://doi.org/10.1016/j.ifset.2015.04.011.

Claus, J. R., & Jeong, J. Y. (2018). Processing conditions and endpoint temperature effects on development of pink defect without pink-generating ligands in cooked ground turkey breast. Poultry science, 97(2), 667-675. https://doi.org/10.3382/ps/pex168.

da Silva, J. S., Voss, M., de Menezes, C. R., Barin, J. S., Wagner, R., Campagnol, P. C. B., & Cichoski, A. J. (2020). Is it possible to reduce the cooking time of mortadellas using ultrasound without affecting their oxidative and microbiological quality?. Meat science, 159, 107947. https://doi.org/10.1016/j.meatsci.2019.107947.

de Lima Alves, L., Donadel, J. Z., Athayde, D. R., da Silva, M. S., Klein, B., Fagundes, M. B., ... & Cichoski, A. J. (2020). Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrasonics sonochemistry, 67, 105161. https://doi.org/10.1016/j.ultsonch.2020.105161.

Domínguez, R., Borrajo, P., & Lorenzo, J. M. (2015). The effect of cooking methods on nutritional value of foal meat. Journal of food Composition and Analysis, 43, 61-67. https://doi.org/10.1016/j.jfca.2015.04.007.

Fernández-López, J., Sayas-Barberá, E., Muñoz, T., Sendra, E., Navarro, C., & Pérez-Alvarez, J. A. (2008). Effect of packaging conditions on shelf-life of ostrich steaks. Meat Science, 78(1-2), 143-152. https://doi.org/10.1016/j.meatsci.2007.09.003.

Firouz, M. S., Sardari, H., Chamgordani, P. A., & Behjati, M. (2022). Power ultrasound in the meat industry (freezing, cooking and fermentation): Mechanisms, advances and challenges. Ultrasonics Sonochemistry, 86, 106027. https://doi.org/10.1016/j.ultsonch.2022.106027.

García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2007). Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). Journal of Food Engineering, 80(3), 813-821. https://doi.org/10.1016/j.jfoodeng.2006.07.010.

Gómez, I., Janardhanan, R., Ibañez, F. C., & Beriain, M. J. (2020). The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods, 9(10), 1416. https://doi.org/10.3390/foods9101416.

Huang, F., Huang, M., Xu, X., & Zhou, G. (2011). Influence of heat on protein degradation, ultrastructure and eating quality indicators of pork. Journal of the Science of Food and Agriculture, 91(3), 443-448. https://doi.org/10.1002/jsfa.4204.

Ignatova, M., Prévost, H., Leguérinel, I., & Guillou, S. (2010). Growth and reducing capacity of Listeria monocytogenes under different initial redox potential. Journal of applied microbiology, 108(1), 256-265. https://doi.org/10.1111/j.1365-2672.2009.04426.x.

Kerth, C. R., Berto, M. C., Miller, R. K., & Savell, J. W. (2022). Cooking surface temperatures, steak thickness, and quality grade effects on volatile aroma compounds. Meat and Muscle Biology, 5(1). https://doi.org/10.22175/mmb.12929.

Khan, I. A., Liu, D., Yao, M., Memon, A., Huang, J., & Huang, M. (2019). Inhibitory effect of Chrysanthemum morifolium flower extract on the formation of heterocyclic amines in goat meat patties cooked by various cooking methods and temperatures. Meat Science, 147, 70-81. https://doi.org/10.1016/j.meatsci.2018.08.028.

Kılıç, B., Şimşek, A., Claus, J. R., Atılgan, E., & Bilecen, D. (2016). Impact of added encapsulated phosphate level on lipid oxidation inhibition during the storage of cooked ground meat. Journal of food science, 81(2), C359-C368. https://doi.org/10.1111/1750-3841.13205.

Kılıç, B., Şimşek, A., Claus, J. R., & Atılgan, E. (2014). Encapsulated phosphates reduce lipid oxidation in both ground chicken and ground beef during raw and cooked meat storage with some influence on color, pH, and cooking loss. Meat science, 97(1), 93-103. https://doi.org/10.1016/j.meatsci.2014.01.014.

Klinhom, P., Klinhom, J., & Methawiwat, S. (2017). Effect of different cooking method on cooking loss and lipid oxidation in buffalo meat. Applied Mechanics and Materials, 855, 70-74. https://doi.org/10.4028/www.scientific.net/AMM.855.70.

Latoch, A., & Stasiak, D. M. (2015). Effect of Mentha piperita on Oxidative Stability and Sensory Characteristics of Cooked Pork Sausage. Journal of Food Processing and Preservation, 39(6), 1566-1573. https://doi.org/10.1111/jfpp.12383.

Leães, Y. S. V., Pinton, M. B., de Aguiar Rosa, C. T., Robalo, S. S., Wagner, R., de Menezes, C. R., ... & Cichoski, A. J. (2020). Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by NaCl reduction in meat emulsions. Ultrasonics Sonochemistry, 61, 104830. https://doi.org/10.1016/j.ultsonch.2019.104830.

Lien, R., Hunt, M. C., Anderson, S., Kropf, D. H., Loughin, T. M., Dikeman, M. E., & Velazco, J. (2002). Effects of endpoint temperature on the internal color of pork patties of different myoglobin form, initial cooking state, and quality. Journal of food science, 67(3), 1011-1015. https://doi.org/10.1111/j.1365-2621.2002.tb09445.x.

López-Vargas, J. H., Fernández-López, J., Pérez-Álvarez, J. Á., & Viuda-Martos, M. (2014). Quality characteristics of pork burger added with albedo-fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Meat science, 97(2), 270-276. https://doi.org/10.1016/j.meatsci.2014.02.010.

Mancini, R. A., Kropf, D. H., Hunt, M. C., & Johnson, D. E. (2005). Effects of endpoint temperature, pH, and storage time on cooked internal color reversion of pork longissimus chops. Journal of Muscle Foods, 16(1), 16-26. https://doi.org/10.1111/j.1745-4573.2004.07103.x.

Molins, R. A., Kraft, A. A., Walker, H. W., Rust, R. E., Olson, D. G., & Merkenich, K. (1987). Effect of inorganic polyphosphates on ground beef characteristics: some chemical, physical, and sensory effects on frozen beef patties. Journal of Food Science, 52(1), 50-52. https://doi.org/10.1111/j.1365-2621.1987.tb13970.x.

Nehring, P., Lorenzo, J. M., Vendruscolo, R. G., Furlan, V. J. M., Seibt, A. C. M. D., Leães, Y. S. V., ... & Cichoski, A. J. (2023). Effect of ultrasound and Staphylococcus xylosus on the bioconversion of cooked chicken meat by-products. Food Chemistry Advances, 3, 100351. https://doi.org/10.1016/j.focha.2023.100351.

Pandey, M. C., Harilal, P. T., & Radhakrishna, K. (2014). Effect of processing conditions on physico-chemical and textural properties of shami kebab. International Food Research Journal, 21(1), 223.

Pang, B., Yu, X., Bowker, B., Zhang, J., Yang, Y., & Zhuang, H. (2021). Effect of meat temperature on moisture loss, water properties, and protein profiles of broiler pectoralis major with the woody breast condition. Poultry Science, 100(2), 1283-1290. https://doi.org/10.1016/j.psj.2020.10.034.

Piñon, M. I., Alarcon-Rojo, A. D., Renteria, A. L., & Carrillo-Lopez, L. M. (2020). Microbiological properties of poultry breast meat treated with high-intensity ultrasound. Ultrasonics, 102, 105680. https://doi.org/10.1016/j.ultras.2018.01.001.

Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International journal of food microbiology, 87(3), 207-216. https://doi.org/10.1016/S0168-1605(03)00075-8.

Rasinska, E., Rutkowska, J., Czarniecka-Skubina, E., & Tambor, K. (2019). Effects of cooking methods on changes in fatty acids contents, lipid oxidation and volatile compounds of rabbit meat. Lwt, 110, 64-70. https://doi.org/10.1016/j.lwt.2019.04.067.

Rincon, A. M., Singh, R. K., & Stelzleni, A. M. (2015). Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a radio frequency oven. LWT-Food Science and Technology, 64(2), 1323-1328. https://doi.org/10.1016/j.lwt.2015.07.017.

Sams, A. R., & Feria, R. (1991). Microbial effects of ultrasonication of broiler drumstick skin. Journal of Food Science, 56(1), 247-248. https://doi.org/10.1111/j.1365-2621.1991.tb08020.x.

Schwartz, M., Marais, J., Strydom, P. E., & Hoffman, L. C. (2022). Effects of increasing internal end‐point temperatures on physicochemical and sensory properties of meat: A review. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2843-2872. https://doi.org/10.1111/1541-4337.12948.

Sen, A. R., Naveena, B. M., Muthukumar, M., & Vaithiyanathan, S. (2014). Colour, myoglobin denaturation and storage stability of raw and cooked mutton chops at different end point cooking temperature. Journal of food science and technology, 51(5), 970-975. https://doi.org/10.1007/s13197-011-0557-z.

Serrano, A., Librelotto, J., Cofrades, S., Sánchez-Muniz, F. J., & Jiménez-Colmenero, F. J. M. S. (2007). Composition and physicochemical characteristics of restructured beef steaks containing walnuts as affected by cooking method. Meat science, 77(3), 304-313. https://doi.org/10.1016/j.meatsci.2007.03.017.

Smith, A. M., Harris, K. B., Haneklaus, A. N., & Savell, J. W. (2011). Proximate composition and energy content of beef steaks as influenced by USDA quality grade and degree of doneness. Meat science, 89(2), 228-232. https://doi.org/10.1016/j.meatsci.2011.04.027.

Spanier, A. M., & Miller, J. A. (1996). Effect of temperature on the quality of muscle foods. Journal of Muscle Foods, 7(3), 355-375. https://doi.org/10.1111/j.1745-4573.1996.tb00611.x.

Suleman, R., Wang, Z., Aadil, R. M., Hui, T., Hopkins, D. L., & Zhang, D. (2020). Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Science, 167, 108172. https://doi.org/10.1016/j.meatsci.2020.108172.

Şimşek, A., & Kılıç, B. (2020). Influences of encapsulated polyphosphate incorporation on oxidative stability and quality characteristics of ready to eat beef Döner kebab during storage. Meat science, 169, 108217. https://doi.org/10.1016/j.meatsci.2020.108217.

Şimşek, A., & Kılıç, B. (2016). Et Kaynaklı Biyoaktif Peptitler ve Fonksiyonel Özellikleri. Gıda, 41(4), 267-274. https://doi.org/10.15237/gida.GD16013.

Uysal, C., Enişte, İ., Çifçi, M., Şimşek, A., & Kılıç, B. (2022). Effects of different packaging methods and storage temperatures on physicochemical, microbiological, textural and sensorial properties of emulsion-type sausage chips. Journal of Stored Products Research, 98, 102002. https://doi.org/10.1016/j.jspr.2022.102002.

Tenderis, B., Kılıç, B., Yalçın, H., & Şimşek, A. (2021). Controlling growth of Listeria monocytogenes and Pseudomonas fluorescens in thermally processed ground beef by sodium lactate, encapsulated or unencapsulated polyphosphates incorporation. LWT, 144, 111169. https://doi.org/10.1016/j.lwt.2021.111169.

Tornberg, E. V. A. (2005). Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat science, 70(3), 493-508. https://doi.org/10.1016/j.meatsci.2004.11.021.

Torun, M. M. R., Khan, M. M. H., Rahman, M. M., Sadakuzzaman, M., & Hashem, M. A. (2023). Influence of degree of doneness temperature on the sensory, physiochemical, nutritional, and microbial properties of beef. Meat Research, 3(5). https://doi.org/10.55002/mr.3.5.69.

Wang, Y., Zhang, W., & Zhou, G. (2019). Effects of ultrasound‐assisted frying on the physiochemical properties and microstructure of fried meatballs. International Journal of Food Science & Technology, 54(10), 2915-2926. https://doi.org/10.1111/ijfs.14159.

Yancey, J. W. S., Wharton, M. D., & Apple, J. K. (2011). Cookery method and end-point temperature can affect the Warner–Bratzler shear force, cooking loss, and internal cooked color of beef longissimus steaks. Meat Science, 88(1), 1-7. https://doi.org/10.1016/j.meatsci.2010.11.020.

Yingyuad, S., Ruamsin, S., Reekprkhon, D., Douglas, S., Pongamphai, S., & Siripatrawan, U. (2006). Effect of chitosan coating and vacuum packaging on the quality of refrigerated grilled pork. Packaging technology and science: An international journal, 19(3), 149-157. https://doi.org/10.1002/pts.717.

Zhang, Z., Meng, F., Wang, B., & Cao, Y. (2022). Effects of antioxidants on physicochemical properties and odorants in heat processed beef flavor and their antioxidant activity under different storage conditions. Frontiers in Nutrition, 9, 966697. https://doi.org/10.3389/fnut.2022.966697.

Zhang, J., Zhang, Y., Zou, Y., & Zhang, W. (2021). Effects of ultrasound-assisted cooking on quality characteristics of spiced beef during cold storage. Lwt, 136, 110359. https://doi.org/10.1016/j.lwt.2020.110359.

Zhang, J., Zhang, Y., Wang, Y., Xing, L., & Zhang, W. (2020). Influences of ultrasonic-assisted frying on the flavor characteristics of fried meatballs. Innovative Food Science & Emerging Technologies, 62, 102365. https://doi.org/10.1016/j.ifset.2020.102365.

Zhao, X., Sun, X., Lai, B., Liu, R., Wu, M., Ge, Q., & Yu, H. (2024). Effects of ultrasound-assisted cooking on the physicochemical properties and microstructure of pork meatballs. Meat Science, 208, 109382. https://doi.org/10.1016/j.meatsci.2023.109382.

Zou, Y., Kang, D., Liu, R., Qi, J., Zhou, G., & Zhang, W. (2018). Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrasonics sonochemistry, 46, 36-45. https://doi.org/10.1016/j.ultsonch.2018.04.005.

Downloads

Published

28.02.2025

How to Cite

Aydın, D., Kılıç, B., & Şimşek, A. (2025). Impact of Ultrasound-assisted Cooking and Endpoint Core Temperature on Physicochemical and Microbiological Properties, and Oxidative Stability of Beef. Turkish Journal of Agriculture - Food Science and Technology, 13(2), 476–486. https://doi.org/10.24925/turjaf.v13i2.476-486.7470

Issue

Section

Research Paper