Bacteriocins as Food Bio-preservatives: Mechanism of Action, Purification and Characterization

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2375-2397.6749

Keywords:

bio-preservation, antimicrobial peptide, bacteriocin, food safety, food quality

Abstract

In recent years, as consumers have increased their tendency to consume natural products, bio-preservatives that do not have negative effects, environmentally friendly and safer with high antimicrobial effects have become more important as alternative antimicrobial agents in the food industry. Bacteriocins produced by lactic acid bacteria as a result of natural processes provide an important potential to ensure food safety and improve quality. Bacteriocins are antimicrobial peptides that are synthesized ribosomally in the logarithmic phase or at the end of the logarithmic phase and have an antagonistic effect. Bacteriocins have various mechanisms of action on Gram-positive and Gram-negative bacteria, such as pore formation in the cell membrane and disruption of the cell wall structure. In order to characterize bacteriocins, it is very important that purification processes are efficient. Besides, it is of great importance to optimize the growth conditions of microorganisms in order to increase recovery efficiency. The heat stability of bacteriocins increases their usability in many foods processed at high temperatures. In this review study, the classification of bacteriocins, their mechanism of action, factors affecting their production, optimization, purification and characterization, as well as their inhibitory activities in food systems are discussed.

References

Abanoz, H. S., & Kunduhoglu, B. (2018). Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Korean Journal for Food Science of Animal Resources, 38(5), 1064. https://doi.org/10.5851/kosfa.2018.e40

Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., & Ariff, A. B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. Rsc Advances, 7(47), 29395-29420. https://doi.org/10.1039/C6RA24579J

Abeer Mohammed, A. B., Al‐Saman, M. A., & Tayel, A. A. (2017). Antibacterial activity of fusion from biosynthesized acidocin/silver nanoparticles and its application for eggshell decontamination. Journal of Basic Microbiology, 57(9), 744-751. https://doi.org/10.1002/jobm.201700192

Abo-Amer, A. E. (2011). Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Annals of Microbiology, 61, 445-452. https://doi.org/10.1007/s13213-010-0157-6

Acedo, J. Z., van Belkum, M. J., Lohans, C. T., McKay, R. T., Miskolzie, M., & Vederas, J. C. (2015). Solution structure of acidocin B, a circular bacteriocin produced by Lactobacillus acidophilus M46. Applied and Environmental Microbiology, 81(8), 2910-2918. https://doi.org/10.1128/AEM.04265-14

Aguilar-Galvez, A., Guillermo, S., Dubois-Dauphin, R., Campos, D., & Thonart, P. (2011). The influence of growth conditions on enterocin-like production by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431 isolates from artisanal Peruvian cheeses. Annals of Microbiology, 61(4), 955-964. https://doi.org/10.1007/s13213-011-0219-4

Ahn, H., Kim, J., Kim, & W. J. (2017). Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control, 80, 59-66. https://doi.org/10.1016/j.foodcont.2017.04.022

Allende, A., Martínez, B., Selma, V., Gil, M. I., Suárez, J. E., & Rodríguez, A. (2007). Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiology, 24(7-8), 759-766. https://doi.org/10.1016/j.fm.2007.03.002

Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100, 2939-2951. https://doi.org/10.1007/s00253-016-7343-9

Amso, Z., Bisset, S. W., Yang, S. H., Harris, P. W., Wright, T. H., Navo, C. D., Patchett, M. L., Norris, G. E., Brimble, M. A. (2018). Total chemical synthesis of glycocin F and analogues: S-glycosylation confers improved antimicrobial activity. Chemical Science, 9(6), 1686-1691. https://doi.org/10.1039/c7sc04383j

Aspri, M., O'Connor, P. M., Field, D., Cotter, P. D., Ross, P., Hill, C., & Papademas, P. (2017). Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 73, 1-9. https://doi.org/10.1016/j.idairyj.2017.04.008

Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A., & de Souza Oliveira, R. P. (2013). Novel biotechnological applications of bacteriocins: a review. Food Control, 32(1), 134-142. https://doi.org/10.1016/j.foodcont.2012.11.025

Banerjee, S. P., Dora, K. C., & Chowdhury, S. (2013). Detection, partial purification and characterization of bacteriocin produced by Lactobacillus brevis FPTLB3 isolated from freshwater fish: Bacteriocin from Lb. brevis FPTLB3. Journal of Food Science and Technology, 50, 17-25. https://doi.org/10.1007/s13197-011-0240-4

Bangar, S. P., Chaudhary, V., Singh, T. P., & Özogul, F. (2022). Retrospecting the concept and industrial significance of LAB bacteriocins. Food Bioscience, 46, 101607. https://doi.org/10.1016/j.fbio.2022.10160

Barth, M., Hankinson, T. R., Zhuang, H., & Breidt, F. (2009). Microbiological spoilage of fruits and vegetables. Compendium of the microbiological spoilage of foods and beverages. In: Sperber WH, Doyle MP (editors) Springer, pp. 135-183.

Bhatia, A., Rani, P., & Kaur, C. (2016). Application of bacteriocin from Lactobacillus acidophilus for shelf life enhancement of fuji apples. International Journal of Scientific Engineering Research, 7(10), 775-792.

Braffman, N. R., Piscotta, F. J., Hauver, J., Campbell, E. A., Link, A. J., & Darst, S A. (2019). Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proceedings of the National Academy of Sciences, 116(4), 1273-1278. https://doi.org/10.1073/pnas.1817352116

Britton, A. P., van der Ende, S. R., van Belkum, M. J., & Martin‐Visscher, L. A. (2020). The membrane topology of immunity proteins for the two‐peptide bacteriocins carnobacteriocin XY, lactococcin G, and lactococcin MN shows structural diversity. Microbiology Open, 9(1), e00957. https://doi.org/10.1002/mbo3.957

Brunelle, J. L., & Green, R. (2014). One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). In Methods in enzymology, Academic Press, pp. 151-159.

Castro, S. M., Kolomeytseva, M., Casquete, R., Silva, J., Queirós, R., Saraiva, J. A., & Teixeira, P. (2017). Biopreservation strategies in combination with mild high pressure treatments in traditional Portuguese ready-to-eat meat sausage. Food Bioscience, 19, 65-72. https://doi.org/10.1016/j.fbio.2017.05.008

Cavera, V. L., Arthur, T. D., Kashtanov, D., & Chikindas, M. L. (2015). Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents, 46(5), 494-501. https://doi.org/10.1016/j.ijantimicag.2015.07.011

CDC, (2023). List of Multistate Foodborne Outbreak Notices. https://www.cdc.gov/foodsafety/outbreaks/lists/outbreaks-list.html (Accessed: 31 August 2023)

Cerveny, J., Meyer, J. D., & Hall, P. A. (2009). Microbiological spoilage of meat and poultry products. Compendium of the microbiological spoilage of foods and beverages. In: Sperber WH, Doyle MP (editors) Springer, pp. 69-86.

Chen, Y., Simmonds, R. S., Sloan, G. L., & Timkovich, R. (2008). The metal binding site of zoocin A. JBIC Journal of Biological Inorganic Chemistry, 13, 855-860. https://doi.org/10.1007/s00775-008-0371-x

Chen, Y. S., Wu, H. C., Kuo, C. Y., Chen, Y. W., Ho, S., & Yanagida, F. (2018). Leucocin C-607, a novel bacteriocin from the multiple-bacteriocin-producing Leuconostoc pseudomesenteroides 607 isolated from persimmon. Probiotics and Antimicrobial Proteins, 10, 148-156. https://doi.org/10.1007/s12602-017-9359-6

Choi, G. H., Holzapfel, W. H., & Todorov, S. D. (2023). Diversity of the bacteriocins, their classification and potential applications in combat of antibiotic resistant and clinically relevant pathogens. Critical Reviews in Microbiology, 49(5), 578-597. https://doi.org/10.1080/1040841X.2022.2090227

Churklam, W., Chaturongakul, S., Ngamwongsatit, B., & Aunpad, R. (2020). The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control, 108, 106864. https://doi.org/10.1016/j.foodcont.2019.106864

Cogan, T. M., & Hill, C. (1993). Cheese starter cultures, Physics and Microbiology. In: Fox PF (editor) London: Chapman & Hall.

Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777-788. https://doi.org/10.1038/nrmicro1273

Cui, Y., Zhang, C., Wang, Y., Shi, J., Zhang, L., Ding, Z., Qu, X., & Cui, H. (2012). Class IIa bacteriocins: diversity and new developments. International Journal of Molecular Sciences, 13(12), 16668-16707. https://doi.org/10.3390/ijms131216668

da Costa, R. J., Voloski, F. L., Mondadori, R. G., Duval, E. H., & Fiorentin, Â. M. (2019). Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality, 2019, 1-12. https://doi.org/10.1155/2019/4726510

da Silva Sabo, S., Converti, A., Todorov, S. D., Domínguez, J. M., & de Souza Oliveira, R. P. (2015). Effect of inulin on growth and bacteriocin production by Lactobacillus plantarum in stationary and shaken cultures. International Journal of Food Science & Technology, 50(4), 864-870. https://doi.org/10.1111/ijfs.12711

Daba, G. M., Elnahas, M. O., & Elkhateeb, W. A. (2022). Beyond biopreservatives, bacteriocins biotechnological applications: History, current status, and promising potentials. Biocatalysis and Agricultural Biotechnology, 39, 102248. https://doi.org/10.1016/j.bcab.2021.102248

Danial, E. N., Al-Zahrani, S. H. M., & Al-Mahmoudi, Z. A. H. M. (2016). Enhancement of novel extracellular bacteriocin production by media optimization using LAB isolate from meat. Journal of Applied Pharmaceutical Science, 6(12), 20-27. https://doi.org/10.7324/JAPS.2016.601203

Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Emamie, A. D., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), e24093. https://doi.org/10.1002/jcla.24093

Davami, F., Baldi, L., Rajendra, Y., & Wurm, F. M. (2014). Peptone supplementation of culture medium has variable effects on the productivity of CHO cells. International Journal of Molecular and Cellular Medicine, 3(3), 146.

De Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G., & Di Gennaro, P. (2019). Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express, 9(1), 1-11. https://doi.org/10.1186/s13568-019-0813-6

Dimov, S., Peykov, S., Raykova, D., & Ivanova, P. (2008). Influence of diverse sugars on BLIS production by three different Enterococcus strains. Trakia Journal of Sciences, 6(1), 54-59.

Du, R., Ping, W., & Ge, J. (2022). Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. LWT-Food Science and Technology, 153, 112451. https://doi.org/10.1016/j.lwt.2021.112451

Fathizadeh, H., Saffari, M., Esmaeili, D., Moniri, R., & Mahabadi, J. A. (2021). Anticancer effect of enterocin A-colicin E1 fusion peptide on the gastric cancer cell. Probiotics and Antimicrobial Proteins, 13(5), 1443-1451. https://doi.org/10.1007/s12602-021-09770-y

Felicio, B. A., Pinto, M. S., Oliveira, F. S., Lempk, M. W., Pires, A. C. S., & Lelis, C. A. (2015). Effects of nisin on Staphylococcus aureus count and physicochemical properties of Minas Frescal cheese. Journal of Dairy Science, 98(7), 4364-4369. https://doi.org/10.3168/jds.2015-9520

Flühe, L., Knappe, T. A., Gattner, M. J., Schäfer, A., Burghaus, O., Linne, U., & Marahiel, M. A. 2012. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nature Chemical Biology, 8(4), 350-357. https://doi.org/10.1038/nchembio.798

Fu, Y., Zhao, D., Wang, L., Jiang, G., & Liu, X. (2022). A broad-spectrum novel bacteriocin produced by Lactobacillus sakei in Nanjing Steamed Roast Duck: Purification, antimicrobial characteristics, and antibacterial mechanisms. Food Bioscience, 50, 101995. https://doi.org/10.1016/j.fbio.2022.101995

Gabrielsen, C., Brede, D. A., Hernández, P. E., Nes, I. F., & Diep, D. B. (2012). The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrobial Agents and Chemotherapy, 56(6), 2908-2915. https://doi.org/10.1128/AAC.00314-12

Galvez, A., López, R. L., Pulido, R. P., & Burgos, M. J. G. (2014). Natural antimicrobials for food biopreservation. Food Biopreservation, New York: Springer.

Gao, Y., Li, D., Liu, S., & Zhang, L. (2015). Garviecin LG34, a novel bacteriocin produced by Lactococcus garvieae isolated from traditional Chinese fermented cucumber. Food Control, 50, 896-900. https://doi.org/10.1016/j.foodcont.2014.10.040

García-Toledo, J. A., Torrestiana-Sánchez, B., Martínez-Sánchez, C. E., Tejero-Andrade, J. M., García-Bórquez, A., & Mendoza-García, P. G. (2019). Nanoencapsulation of a bacteriocin from Pediococcus acidilactici ITV26 by microfluidization. Food and Bioprocess Technology, 12(1), 88-97. https://doi.org/10.1007/s11947-018-2184-4

Gaspar, C., Donders, G. G., Palmeira-de-Oliveira, R., Queiroz, J. A, Tomaz, C., Martinez-de-Oliveira, J., & Palmeira-de-Oliveira, A. (2018). Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. Amb Express, 8, 1-8. https://doi.org/10.1186/s13568-018-0679-z

Ge, J., Kang, J., & Ping, W. (2019). Effect of acetic acid on bacteriocin production by gram-positive. Journal of Microbiology and Biotechnology, 1341-1348. https://doi.org/10.4014/jmb.1905.05060

Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2015). Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition, 56(8), 1262-1274. https://doi.org/10.1080/10408398.2013.763765

Goyal, C., Malik, R. K., & Pradhan, D. (2018). Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. Journal of Food Science and Technology, 55, 3683-3692. https://doi.org/10.1007/s13197-018-3298-4

Grande Burgos, M. J., Perez Pulido, R., Lopez Aguayo, M. D. C., Gálvez, A., & Lucas, R. (2014). The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. International Journal of Molecular Sciences, 15(12), 22706-22727. https://doi.org/10.3390/ijms151222706

Gratia, A. (1925). Sur un remarquable exemple d'antagonisme entre deux souches de coilbacille. Comptes Rendus des Seances de la Societe de Biologie Filliales, 93, 1040-1041.

Güllüce, M., Karadayı, M., & Barış, Ö. (2013). Bacteriocins: promising natural antimicrobials. Local Environment, 3(6), 1016-1027. https://doi.org/10.13140/2.1.5014.5606

Hasper, H. E., Kramer, N. E., Smith, J. L., Hillman, J. D., Zachariah, C., Kuipers, O. P., Kruijff, B. D., & Breukink, E. (2006). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science, 313(5793), 1636-1637. https://doi.org/10.1126/science.1129818

Heidari, Z., Ghasemi, M. F., & Modiri, L. (2022). Antimicrobial activity of bacteriocin produced by a new Latilactobacillus curvatus sp. LAB-3H isolated from traditional yogurt. Archives of Microbiology, 204(1), 101. https://doi.org/10.1007/s00203-021-02641-8

Heng, N. C., Wescombe, P. A., Burton, J. P., Jack, R. W., & Tagg, J. R. (2007). The diversity of bacteriocins in Gram-positive bacteria. In Bacteriocins: ecology and evolution. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 45-92.

Hwanhlem, N., Chobert, J. M., & Aran, H. (2014). Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control, 41, 202-211. https://doi.org/10.1016/j.foodcont.2014.01.021

İncili, G. K., Karatepe, P., Akgöl, M., Güngören, A., Koluman, A., İlhak, O. İ., Kanmaz, H., Kaya, B., & Hayaloğlu, A. A. (2022). Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiology, 104, 104001. https://doi.org/10.1016/j.fm.2022.104001

Iyapparaj, P., Maruthiah, T., Ramasubburayan, R., Prakash, S., Kumar, C., Immanuel, G., & Palavesam, A. (2013). Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic Biosystems, 9(1), 1-10. https://doi.org/10.1186/2046-9063-9-12

Jawan, R., Abbasiliasi, S., Tan, J. S., Kapri, M. R., Mustafa, S., Halim, M., & Ariff, A. B. (2021). Evaluation of the estimation capability of response surface methodology and artificial neural network for the optimization of bacteriocin-like inhibitory substances production by Lactococcus lactis Gh1. Microorganisms, 9(3), 579. https://doi.org/10.3390/microorganisms9030579

Jo, D. M., Park, S. K., Khan, F., Kang, M. G., Lee, J. H., & Kim, Y. M. (2021). An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control, 123, 107731. https://doi.org/10.1016/j.foodcont.2020.107731

Juárez Tomás, M. S., Bru, E., Wiese, B., & Nader-Macías, M. E. F. (2010). Optimization of low-cost culture media for the production of biomass and bacteriocin by a Urogenital Lactobacillus salivarius strain. Probiotics and Antimicrobial Proteins, 2, 2-11. https://doi.org/10.1007/s12602-010-9037-4

Kaktcham, P. M., Kouam, E. M. F., Tientcheu, M. L. T., Temgoua, J. B., Wacher, C., Ngoufack, F. Z., & de Lourdes Pérez-Chabela, M. (2019). Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: Bacteriocin screening, characterization, and optimization in a low-cost medium. LWT-Food Science and Technology, 107, 272-279. https://doi.org/10.1016/j.lwt.2019.03.007

Kaškonienė, V., Stankevičius, M., Bimbiraitė-Survilienė, K., Naujokaitytė, G., Šernienė, L., Mulkytė, K., Malakauskas, M., & Maruška, A. (2017). Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology, 101, 1323-1335. https://doi.org/10.1007/s00253-017-8088-9

Katiyar, V., & Jain, A. K. (2018). Biopreservation: Novel Technique Augmenting Shelf Life. Thomas LV, Clarkson MR and Delves-Broughton J (2000). Nisin. In: Natural Food Antimicrobial Systems. Naidu AS (editor). CRC Press, Boca-Raton, FL., pp. 463-524.

Kaya, H. I., & Simsek, O. (2019). Characterization of pathogen-specific bacteriocins from lactic acid bacteria and their application within cocktail against pathogens in milk. LWT-Food Science and Technology, 115, 108464. https://doi.org/10.1016/j.lwt.2019.108464

Khay, E. O., Castro, L. M. P., Bernárdez, P. F., Senhaji, N. S., Idaomar, M., & Abrini, J. (2012). Growth of Enterococcus durans E204 producing bacteriocin-like substance in MRS Broth: Description of the growth and quantification of the bacteriocin-like substance. African Journal of Biotechnology, 11(3), 659-665. https://doi.org/10.5897/AJB11.2945

Khider, M., & Elbanna, K. (2017). Extending the shelf life of Camembert cheese via controlling over-ripening by bacteriocin of newly lactic acid bacterial isolate LAB100. International Journal of Food Sciences and Nutrition, 6, 88-98. https://doi.org/10.11648/j.ijnfs.20170602.15

Kim, N. N., Kim, W. J., & Kang, S. S. (2019). Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control, 98, 274-280. https://doi.org/10.1016/j.foodcont.2018.11.004

Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12(1-3), 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x

Kumar, M., Jain, A. K., Ghosh, M., & Ganguli, A. (2012). Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnology and Bioprocess Engineering, 17, 606-616. https://doi.org/10.1007/s12257-011-0631-4

Lahiri, D., Chakraborti, S., Jasu, A., Nag, M., Dutta, B., Dash, S., & Ray, R. R. (2020). Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain. Biocatalysis and Agricultural Biotechnology, 30, 101845. https://doi.org/10.1016/j.bcab.2020.101845

Lahiri, D., Nag, M., Dutta, B., Sarkar, T., & Ray, R. R. (2021). Artificial neural network and response surface methodology-mediated optimization of bacteriocin production by rhizobium leguminosarum. Iranian Journal of Science and Technology, Transactions A: Science, 45, 1509-1517. https://doi.org/10.1007/s40995-021-01157-6

Lee, Y. M., Kim, J. S., & Kim, W. J. (2012). Optimization for the maximum bacteriocin production of Lactobacillus brevis DF01 using response surface methodology. Food Science and Biotechnology, 21, 653-659. https://doi.org/10.1007/s10068-012-0085-2

Li, H. W., Xiang, Y. Z., Zhang, M., Jiang, Y. H., Zhang, Y., Liu, Y. Y., Lin, L. B., & Zhang, Q. L. (2021). A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: Isolation, purification, identification, antibacterial and antibiofilm activity. LWT-Food Science and Technology, 140, 110826. https://doi.org/10.1016/j.lwt.2020.110826

Lim, E. S. (2015). Purification and characterization of two bacteriocins from Lactobacillus brevis BK11 and Enterococcus faecalis BK61 showing anti-Helicobacter pylori activity. Journal of the Korean Society for Applied Biological Chemistry, 58(5), 703-714.

Lohans, C. T., & Vederas, J. C. (2014). Structural characterization of thioether-bridged bacteriocins. The Journal of Antibiotics, 67(1), 23-30.

Lu, M., & Wang, N. S. (2017). Spoilage of milk and dairy products. In The microbiological quality of food, Bevilacqua A, Corbo MR, Sinigaglia M (editors), Woodhead Publishing, pp. 151-178.

Lü, X., Hu, P., Dang, Y., & Liu, B. (2014). Purification and partial characterization of a novel bacteriocin produced by Lactobacillus casei TN-2 isolated from fermented camel milk (Shubat) of Xinjiang Uygur Autonomous region, China. Food Control, 43, 276-283. https://doi.org/10.1016/j.foodcont.2014.03.020

Lv, W., Zhang, X., & Cong, W. (2005). Modelling the production of nisin by Lactococcus lactis in fed-batch culture. Applied Microbiology and Biotechnology, 68, 322-326. https://doi.org/10.1007/s00253-005-1892-7

Ma, J., Yu, W., Hou, J., Han, X., Shao, H., & Liu, Y. (2020). Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties, 23(1), 677-692. https://doi.org/10.1080/10942912.2020.1751656

Machado‐Moreira, B., Richards, K., Brennan, F., Abram, F., & Burgess, C. M. (2019). Microbial contamination of fresh produce: what, where, and how. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1727-1750. https://doi.org/10.1111/1541-4337.12487

Mahdi, L., Al Mathkhury, H. J. F., Sana’a, A. K., Rasool, K. H., Zwain, L., Salman, I. M. A., Mahdi, N. Z., Kaabi, S. A. G., & Mahmood, N. N. (2017). Antibacterial activity of Lactobacillus buchneri bacteriocin against Vibrio parahaemolyticus. Current Applied Science and Technology, 17(1), 81-86.

Mahdy, E. N. D., Al-Zahrani, S. H. M., & Al-Mahmoudi, Z. A. H. M. (2020). Partial purification, characterization and antibacterial activity of bacteriocin from Leuconostoc mesenteroides. International Journal of Life Science and Pharma Research, 10(3), 6-13. https://doi.org/10.22376/ijpbs/lpr.2020.10.3.L6-13

Mahmood, T., Masud, T., Ali, S., Abbasi, K. S., & Liaquat, M. (2015). Optimization and partial characterization of bacteriocin produced by Lactobacillus bulgaricus TLBFT06 isolated from Dahi. Pakistan Journal Pharmaceutical Science, 28(2), 549-555.

Małaczewska, J., & Kaczorek-Łukowska, E. (2021). Nisin-A lantibiotic with immunomodulatory properties: A review. Peptides, 137, 170479. https://doi.org/10.1016/j.peptides.2020.170479

Malheiros, P. S., Sant’Anna, V., Todorov, S. D., & Franco, B. D. (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a. Brazilian Journal of Microbiology, 46, 825-834. https://doi.org/10.1590/S1517-838246320140279

Manea, L., Buruleanu, L., Rustad, T., Manea, I., & Barascu, E. (2017). Overview on the microbiological quality of some meat products with impact on the food safety and health of people, In 2017 E-Health and Bioengineering Conference (EHB), pp. 105-108.

Martinez, R. C. R., Alvarenga, V. O., Thomazini, M., Fávaro-Trindade, C. S., & de Souza Sant'Ana, A. (2016). Assessment of the inhibitory effect of free and encapsulated commercial nisin (Nisaplin®), tested alone and in combination, on Listeria monocytogenes and Bacillus cereus in refrigerated milk. LWT-Food Science and Technology, 68, 67-75. https://doi.org/10.1016/j.lwt.2015.12.027

Martin-Visscher, L. A., van Belkum, M. J., Garneau-Tsodikova, S., Whittal, R. M., Zheng, J., McMullen, L. M., & Vederas, J. C. (2008). Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Applied and Environmental Microbiology, 74(15), 4756-4763. https://doi.org/10.1128/AEM.00817-08

Mathur, H., Fallico, V., O’Connor, P. M., Rea, M. C., Cotter, P. D., Hill, C., & Ross, R. P. (2017). Insights into the mode of action of the sactibiotic thuricin CD. Frontiers in Microbiology, 8, 696. https://doi.org/10.3389/fmicb.2017.00696

Mattick, A. T. R., & Hirsch, A. (1947). Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet, 5, 5-8. https://doi.org/10.1016/S0140-6736(47)90004-4

Meng, F., Zhu, X., Zhao, H., Nie, T., Lu, F., Lu, Z., & Lu, Y. (2021). A class Ⅲ bacteriocin with broad-spectrum antibacterial activity from Lactobacillus acidophilus NX2-6 and its preservation in milk and cheese. Food Control, 121, 107597. https://doi.org/10.1016/j.foodcont.2020.107597

Mercado, V., & Olmos, J. (2022). Bacteriocin production by Bacillus species: Isolation, characterization, and application. Probiotics and Antimicrobial Proteins, 14(6), 1151-1169. https://doi.org/10.1007/s12602-022-09966-w

Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A., & Ross, R. P. (2011). Streptolysin S-like virulence factors: the continuing sagA. Nature Reviews Microbiology, 9(9), 670-681. https://doi.org/10.1038/nrmicro2624

Monafathia, N. R. M. (2018). Optimization of bacteriocin production from Lactobacillus plantarum IN05 by using response surface methodology. Pakistan Journal of Biotechnology, 15(3), 785-791.

Moradi, M., Molaei, R., & Guimarães, J. T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143, 109722. https://doi.org/10.1016/j.enzmictec.2020.109722

Neera, P. M. M., Ramana, K. V., & Bawa, A. S. (2013). Statistical optimization of bacteriocin production by Pediococcus acidilactici in a simple food‐grade medium. Journal of Food Processing and Preservation, 37(2), 179-187. https://doi.org/10.1111/jfpp.12020

Niamah, A. K. (2018). Structure, mode of action and application of pediocin natural antimicrobial food preservative: A review. Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi.org/10.33762/bagrs.2018.160126

Nisa, M., Dar, R. A., Fomda, B. A., & Nazir, R. (2023). Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control, 109710. https://doi.org/10.1016/j.foodcont.2023.109710

O'connor, E., & Shand, R. F. (2002). Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of Industrial Microbiology and Biotechnology, 28(1), 23-31.

Oliveira, M., Abadias, M., Colás-Medà, P., Usall, J., & Viñas, I. (2015). Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. International Journal of Food Microbiology, 214, 4-11. https://doi.org/10.1016/j.ijfoodmicro.2015.07.015

Onwuakor, C. E., Ogbulie, J. N., Braide Wesley, O. T. E., Nwokafor Chibuzo, V., & Uchendu, C. E. (2021). Optimization of bacteriocin production by Lactobacillus fermentum strain COE20 from fermenting Pentaclethra macrophylla benth using response surface methodology. American Journal of Food Science and Technology, 9(2), 30-37. https://doi.org/10.12691/ajfst-9-2-1

Onwuakor, C. E., Ogbulie, J. N., Braide, W., Ogbulie, T. E., Nwokafor, C. V., & Uchendu, C. E. (2020). Optimization of culture conditions for enhanced bacteriocin production by Lactococcus lactis MT186647 using response surface methodology. American Journal of Microbiological Research, 8(4), 110-116. https://doi.org/10.12691/ajmr-8-4-1

Parlindungan, E., Dekiwadia, C., & Jones, O. A. (2021). Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry, 107, 18-26.

Pei, J., Jin, W., Abd El-Aty, A. M., Baranenko, D. A., Gou, X., Zhang, H., Geng, J., Jiang, L., Chen, D., & Yue, T. (2020). Isolation, purification, and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control, 110, 106923. https://doi.org/10.1016/j.foodcont.2019.106923

Peng, Z., Xiong, T., Huang, T., Xu, X., Fan, P., Qiao, B., & Xie, M. (2022). Factors affecting production and effectiveness, performance improvement and mechanisms of action of bacteriocins as food preservative. Critical Reviews in Food Science and Nutrition, 1-14. https://doi.org/10.1080/10408398.2022.2100874

Perez, R. H, Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 13(1), 1-13. https://doi.org/10.1186/1475-2859-13-S1-S3

Powell, J. E., Witthuhn, R. C., Todorov, S. D., & Dicks, L. M. T. (2007). Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. International Dairy Journal, 17(3), 190-198. https://doi.org/10.1016/j.idairyj.2006.02.012

Praeger, U., Herppich, W. B., & Hassenberg, K. (2018). Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality-A review. Critical Reviews in Food Science and Nutrition, 58(2), 318-333. https://doi.org/10.1080/10408398.2016.1169157

Qiao, X., Du, R., Wang, Y., Han, Y., & Zhou, Z. (2020). Isolation, characterization and fermentation optimization of bacteriocin-producing Enterococcus faecium. Waste and Biomass Valorization, 11, 3173-3181. https://doi.org/10.1007/s12649-019-00634-9

Rajaram, G., Manivasagan, P., Thilagavathi, B., & Saravanakumar, A. (2010). Purification and characterization of a bacteriocin produced by Lactobacillus lactis isolated from marine environment. Advance Journal of Food Science and Technology, 2(2), 138-144.

Rasheed, H. A., Tuoheti, T., Zhang, Y., Azi, F., Tekliye, M., & Dong, M. (2020). Purification and partial characterization of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum BZ532 isolated from Chinese fermented cereal beverage (Bozai). LWT-Food Science and Technology, 124, 109113. https://doi.org/10.1016/j.lwt.2020.109113

Raybaudi‐Massilia, R. M., Mosqueda‐Melgar, J., Soliva‐Fortuny, R., & Martín‐Belloso, O. (2009). Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science and Food Safety, 8(3), 157-180. https://doi.org/10.1111/j.1541-4337.2009.00076.x

Ribeiro, S. C., O'Connor, P. M., Ross, R. P., Stanton, C., & Silva, C. C. (2016). An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. International Dairy Journal, 63, 18-28. https://doi.org/10.1016/j.idairyj.2016.07.017

Ribeiro, S. C., Ross, R. P., Stanton, C., & Silva, C. C. (2017). Characterization and application of antilisterial enterocins on model fresh cheese. Journal of Food Protection, 80(8), 1303-1316. https://doi.org/10.4315/0362-028X.JFP-17-031

Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual Reviews in Microbiology, 56(1), 117-137. https://doi.org/10.1146/annurev.micro.56.012302.161024

Rogers, L. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. Journal of Bacteriology, 16(5), 321-325. https://doi.org/10.1128/jb.16.5.321-325.1928

Sabo, S. S., Converti, A., Ichiwaki, S., & Oliveira, R. P. (2019). Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. Journal of Dairy Science, 102(1), 87-99. https://doi.org/10.3168/jds.2018-14881

Salman, M., Shahid, M., Sahar, T., Naheed, S., Arif, M., Iqbal, M., & Nazir, A. (2020). Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using Box-Behnken design. Biocatalysis and Agricultural Biotechnology, 24, 101542. https://doi.org/10.1016/j.bcab.2020.101542

Sawa, N., Zendo, T., Kiyofuji, J., Fujita, K., Himeno, K., Nakayama, J., & Sonomoto, K. (2009). Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Applied and Environmental Microbiology, 75(6), 1552-1558. https://doi.org/10.1128/AEM.02299-08

Seo, H. J., & Kang, S. S. (2020). Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control, 117, 107361. https://doi.org/10.1016/j.foodcont.2020.107361

Shabbir, M. A., Ahmed, H., Maan, A. A., Rehman, A., Afraz, M. T., Iqbal, M. W., Khan, I. M., Amir, R. M., Shraf, W. A., Khan, M. R., & Aadil, R. M. (2020). Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Science and Technology, 41, 279-294. https://doi.org/10.1590/fst.05820

Singh, V. P. (2018). Recent approaches in food bio-preservation-a review. Open Veterinary Journal, 8(1), 104-111. https://doi.org/10.4314/ovj.v8i1.16

Sit, C. S., Lohans, C. T., van Belkum, M. J., Campbell, C. D., Miskolzie, M., & Vederas, J. C. (2012). Substitution of a Conserved Disulfide in the Type IIa Bacteriocin, Leucocin A, with L‐Leucine and L‐Serine Residues: Effects on Activity and Three‐Dimensional Structure. ChemBioChem, 13(1), 35-38. https://doi.org/10.1002/cbic.201100634

Smaoui, S., Elleuch, L., Ben Salah, R., Najah, S., Chakchouk-Mtibaa, A., Sellem, I., Besbes, S., & Mellouli, L. (2014). Efficient role of BacTN635 on the safety properties, sensory attributes, and texture profile of raw minced meat beef and chicken breast. Food Additives & Contaminants: Part A, 31(2), 218-225. https://doi.org/10.1080/19440049.2013.873144

Sonsa-Ard, N., Rodtong, S., Chikindas, M. L., & Yongsawatdigul, J. (2015). Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control, 54, 308-316. https://doi.org/10.1016/j.foodcont.2015.02.010

Sperber, W. H. (2009). Microbiological spoilage of acidified specialty products. Compendium of the microbiological spoilage of foods and beverages, In: Sperber WH, Doyle MP (editors) Springer, pp. 285-299.

Tenea, G. N., & Barrigas, A. (2018). The efficacy of bacteriocin-containing cell-free supernatant from Lactobacillus plantarum Cys5-4 to control pathogenic bacteria growth in artisanal beverages. International Food Research Journal, 25(5), 2031-2037.

Tenea, G. N., & Lara, M. I. (2019). Antimicrobial compounds produced by Weissella confusa Cys2-2 strain inhibit Gram-negative bacteria growth. CyTA-Journal of Food, 17(1), 105-111. https://doi.org/10.1080/19476337.2018.1561520

Todorov, S. D., Ho, P., Vaz-Velho, M., & Dicks, L. M. T. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science, 84(3), 334-343. https://doi.org/10.1016/j.meatsci.2009.08.053

Tosukhowong, A., Zendo, T., Visessanguan, W., Roytrakul, S., Pumpuang, L., Jaresitthikunchai, J., & Sonomoto, K. (2012). Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Applied and Environmental Microbiology, 78(5), 1619-1623. https://doi.org/10.1128/AEM.06891-11

Trinetta, V., Rollini, M., & Manzoni, M. (2008). Development of a low cost culture medium for sakacin A production by L. sakei. Process Biochemistry, 43(11), 1275-1280. https://doi.org/10.1016/j.procbio.2008.07.011

Trivedi, D., Jena, P. K., Patel, J. K., & Seshadri, S. (2013). Partial purification and characterization of a bacteriocin DT24 produced by probiotic vaginal Lactobacillus brevis DT24 and determination of its anti-uropathogenic Escherichia coli potential. Probiotics and Antimicrobial Proteins, 5, 142-151. https://doi.org/10.1007/s12602-013-9132-4

Türk Gıda Kodeksi. (2013). Gıda Katkı Maddeleri Yönetmeliği. https://www.resmigazete.gov.tr/eskiler/2013/06/20130630-4.htm (Erişim tarihi: 20 Ocak 2021)

Valledor, S. J. D., Dioso, C. M., Bucheli, J. E. V., Park, Y. J., Suh, D. H., Jung, E. S., Kim, B., Holzapfel, W. H., & Todorov, S. D. (2022). Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from kimchi, a Korean fermented cabbage. Food Microbiology, 102, 103886. https://doi.org/10.1016/j.fm.2021.103886

Verma, D. K., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., Baranwal, D., Patel, A. R., Shah, N., Utama, G. L., Niamah, A. K., Chavez-Gonzalez, M. L., Gallegos, C. F., Aguilar, C. N., & Srivastav, P. P. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594. https://doi.org/10.1016/j.fbio.2022.101594

Verma, S. K., Sood, S. K., Saini, R. K., & Saini, N. (2017). Pediocin PA-1 containing fermented cheese whey reduces total viable count of raw buffalo (Bubalis bubalus) milk. LWT-Food Science and Technology, 83, 193-200. https://doi.org/10.1016/j.lwt.2017.02.031

Vidhyasagar, V., & Jeevaratnam, K. (2013). Bacteriocin activity against various pathogens produced by Pediococcus pentosaceus VJ13 isolated from Idly batter. Biomedical Chromatography, 27(11), 1497-1502. https://doi.org/10.1002/bmc.2948

Vijayakumar, P. P., & Muriana, P. M. (2015). A microplate growth inhibition assay for screening bacteriocins against Listeria monocytogenes to differentiate their mode-of-action. Biomolecules, 5(2), 1178-1194. https://doi.org/10.3390/biom5021178

Wang, G., Song, Q., Huang, S., Wang, Y., Cai, S., Yu, H., Ding, X., Zheng, X., & Zhang, J. (2020). Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella. Animals, 10(2), 345. https://doi.org/10.3390/ani10020345

Wannun, P., Piwat, S., & Teanpaisan, R. (2016). Purification, characterization, and optimum conditions of fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11. Applied Biochemistry and Biotechnology, 179, 572-582. https://doi.org/10.1007/s12010-016-2014-y

Wayah, S. B., & Philip, K. (2018). Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial Cell Factories, 17(1), 1-18. https://doi.org/10.1186/s12934-018-0972-1

Winkelströter, L. K., Tulini, F. L., & De Martinis, E. C. (2015). Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT-Food Science and Technology, 64(2), 586-592. https://doi.org/10.1016/j.lwt.2015.06.014

Woo, C., Jung, S., Fugaban, J. I. I., Bucheli, J. E. V., Holzapfel, W. H., & Todorov, S. D. (2021). Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative. Journal of Applied Microbiology, 131(3), 1226-1239. https://doi.org/10.1111/jam.15042

Wu, J., Zang, M., Wang, S., Zhao, B., Bai, J., Xu, C., Shi, Y., & Qiao, X. (2022). Nisin: From a structural and meat preservation perspective. Food Microbiology, 104207. https://doi.org/10.1016/j.fm.2022.104207

Xiang, Y. Z., Wu, G., Zhang, Y. P., Yang, L. Y., Zhang, Y. M., Zhao, Z. S., Deng, X. Y., & Zhang, Q. L. (2022). Inhibitory effect of a new bacteriocin RSQ04 purified from Lactococcus lactis on Listeria monocytogenes and its application on model food systems. LWT-Food Science and Technology, 164, 113626. https://doi.org/10.1016/j.lwt.2022.113626

Xu, C., Fu, Y., Liu, F., Liu, Z., Ma, J., Jiang, R., & Hou, J. (2021). Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT-Food Science and Technology, 137, 110338. https://doi.org/10.1016/j.lwt.2020.110338

Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: approaches, advances, and applications. Annual Review of Biomedical Engineering, 11, 49-79. https://doi.org/10.1146/annurev-bioeng-061008-124934

Ye, P., Wang, J., Liu, M., Li, P., & Gu, Q. (2021). Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. LWT-Food Science and Technology, 143, 111125. https://doi.org/10.1016/j.lwt.2021.111125

Zendo, T., Eungruttanagorn, N., Fujioka, S., Tashiro, Y., Nomura, K., Sera, Y., Kobayashi, G., Nakayama, J., Ishizaki, A., & Sonomoto, K. (2005). Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. Journal of Applied Microbiology, 99(5), 1181-1190. https://doi.org/10.1111/j.1365-2672.2005.02704.x

Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X., & Ai, L. (2018). Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Frontiers in Microbiology, 9, 2165. https://doi.org/10.3389/fmicb.2018.02165

Zhang, T., Pan, Y., Li, B., Ou, J., Zhang, J., Chen, Y., Peng, X., & Chen, L. (2013). Molecular cloning and antimicrobial activity of enterolysin A and helveticin J of bacteriolysins from metagenome of Chinese traditional fermented foods. Food Control, 31(2), 499-507. https://doi.org/10.1016/j.foodcont.2012.11.015

Zhu, L., Zeng, J., Wang, C., & Wang, J. (2022). Structural basis of pore formation in the mannose phosphotransferase system by pediocin PA-1. Applied and Environmental Microbiology, 88(3), e01992-21. https://doi.org/10.1128/AEM.01992-21

Zou, J., Jiang, H., Cheng, H., Fang, J., & Huang, G. (2018). Strategies for screening, purification and characterization of bacteriocins. International Journal of Biological Macromolecules, 117, 781-789. https://doi.org/10.1016/j.ijbiomac.2018.05.233

Downloads

Published

12.12.2024

How to Cite

Öztürk, B., & Şengün, İlkin. (2024). Bacteriocins as Food Bio-preservatives: Mechanism of Action, Purification and Characterization. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2375–2397. https://doi.org/10.24925/turjaf.v12is2.2375-2397.6749