Effects of Wheat and Corn Gluten Used in Rat Diets on Liver Enzymes and Lipid Profile in Serum Tissue
DOI:
https://doi.org/10.24925/turjaf.v12i11.1886-1893.6823Keywords:
gluten, liver enzymes, lipid profile, rat, NutritionAbstract
In this study, the effects of different protein sources added to rat diets on liver enzymes and lipid profile in serum tissues were investigated. Soybean meal, wheat and corn gluten were used as protein sources. The study was designed in three groups as Group I, Group II and Group III. A total of 24 male and 24 female Sprague Dawley rats, 8 males and 8 females in each group, were used in the study. Animals were fed with experimental diets for a total of 60 days, 30 days with their mothers after birth and 30 days after separation from their mothers. At the end of the study, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT), creatine kinase (CK) to determine liver enzymes in serum tissue; triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acid (SYA), cholesterol (Kol) and phospholipid (F1) analyses were performed to determine lipid profile. At the end of the study, there was no difference between the liver enzyme levels of female rats, while there was a significant difference between AST and ALP levels of male animals. AST levels of Group II were lower than Group I and Group III, while ALP levels of Group II and III were significantly higher than Group I. "De Ritis" levels (AST/ALT) of female rats were higher in Group I (2.42/ 1.84) and Group II (2.28/0.71), while male rats were higher in Group III (1.29/2.71). In the study, the free fatty acid ratio in Group I of female rats was significantly lower than that in Group II (p<0.05) and similar to Group III. At the end of the study, it was determined that different protein sources significantly affected ALP and AST ratios of male rats, De Ritis levels of male and female rats and SYA ratio of female rats.
References
Akçam, M. (2016). Transaminaz yüksekliği olan çocuklarda klinik yaklaşım. SDÜ Tıp Fakültesi Dergisi, 22(Çocuk Özel Sayısı), 26-33.
Bakır, A., Güney, M., Erdal, H., Yavuz, Ö., Günal, A., Gülşen, M., & Yavuz, M. T. (2021). Assessment of the performances of hepatitis C virus viral markers, age-platelet index and aspartate aminotransferase to alanine aminotransferase ratio scores, in predicting liver histopathology. Turkish Journal of Internal Medicine, 3(1), 6-12. https://doi.org/10.46310/tjim.825814
Block, H. C., Macken, C., Klopfenstein, T. J., Erickson, G. E., & Stock, R. (2005). Optimal wet corn gluten and protein levels in steam-flaked corn-based finishing diets for steer calves. Journal of Animal Science, 83(12), 2798-2805. https://doi.org/10.2527/2005.83122798x
Botros, M., & Sikaris, K. A. (2013). The de ritis ratio: the test of time. The Clinical Biochemist Reviews, 34(3), 117.
Cabanillas, B. (2020). Gluten-related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Critical Reviews in Food Science and Nutrition, 60(15), 2606-2621. https://doi.org/10.1080/10408398.2019.1651689
Caio, G., Volta, U., Sapone, A., Leffler, D. A., De Giorgio, R., Catassi, C., & Fasano, A. (2019). Celiac disease: a comprehensive current review. BMC Medicine, 17, 1-20. https://doi.org/10.1186/s12916-019-1380-z
Can M.B., İmik H., Kapakin Terim K.A. (2024). Effects of wheat and corn gluten on growth performance, histopathologic and autoimmune metabolism of entero-hepatic tissue in lambs. Journal of the Hellenic Veterinary Medical Society, (In Press).
Chen, W., Wang, W., Zhou, L., Zhou, J., He, L., Li, J., Xu, X., Wang, J., & Wang, L. (2022). Elevated AST/ALT ratio is associated with all‐cause mortality and cancer incident. Journal of Clinical Laboratory Analysis, 36(5), e24356. https://doi.org/10.1002/jcla.24356
Chung, J., Acharya, D., Singh, J. K., & Sakong, J. (2023). Association of blood mercury level with liver enzymes in korean adults: an analysis of 2015–2017 korean national environmental health survey. International Journal of Environmental Research and Public Health, 20(4), 3290. https://doi.org/10.3390/ijerph20043290
Dąbrowska, K., Zaczek, Z., Złotogórska, K., Majewska, K., Kaczanowska, J., & Sobocki, J. (2022). Activity of aminotransferases as a marker of liver injury in home parenteral nutrition patients. Clinical and Experimental Hepatology, 8(2), 132-138. https://doi.org/10.5114/ceh.2022.115124
Engelmann, G., Hoffmann, G. F., Grulich-Henn, J., & Teufel, U. (2014). Alanine aminotransferase elevation in obese infants and children: a marker of early onset non alcoholic fatty liver disease. Hepatitis Monthly, 14(4). https://doi.org/10.5812/hepatmon.14112
Freire, R., Fernandes, L., Silva, R. B., Coelho, B. S., Araújo, L., Ribeiro, L. S., Andrade, J. M. O., Lima, P. M. A., Araújo, R. S., Santos, S. H. S., Coimbra, C. C., Cardoso, V. N., & Alvarez-Leite, J. I. (2015). Wheat gluten intake increases weight gain and adiposity associated with reduced thermogenesis and energy expenditure in an animal model of obesity. International Journal of Obesity, 40(3), 479-486. https://doi.org/10.1038/ijo.2015.204
Gümüş, R., Ercan, N., & İmik, H. (2022). Ratlarda Rasyona Katılan Glütenlerin Serum Lipid Profili Üzerine Etkisi. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi, 2(1), 72-77.
Gümüş, R., & Özbilgin, A. (2022). Effects of Resveratrol and Curcumin Extracts Added to Broiler Diet on Biochemical Parameters and Liver Enzymes in Serum. Turkish Journal of Agriculture-Food Science and Technology, 10(3), 434-439. https://doi.org/10.24925/turjaf.v10i3.434-439.5041
Gümüş, R., Terim Kapakin, K. A., Manavoğlu Kirman, E., Bolat, İ., İmik, A., & Ercan N. (2024). The effect of adding wheat and corn gluten to the diet of rats on the autoimmune and histopathological parameters in the intestine and liver. Rev. Cient. FCV-LUZ, 34(1):9. rcfcv-e34351.
Gümüş, R., Uslu, S., Aydoğdu, U., İmik, A., & Ekici, M. (2021). Investigation of the effects of glutens on serum interleukin-1 beta and tumor necrosis factor-alpha levels and the immunohistochemical distribution of CD3 and CD8 receptors in the small intestine in male rats. Brazilian Archives of Biology and Technology, 64, e21210256. https://doi.org/10.1590/1678-4324-2021210256
Green, R. M., & Flamm, S. (2002). AGA technical review on the evaluation of liver chemistry tests. Gastroenterology, 123(4), 1367-1384. https://doi.org/10.1053/gast.2002.36061
Hazar, S. (2004). Egzersi̇ze bağli i̇skelet ve kalp kasi hasari. Ankara Üniversitesi Beden Eğitimi ve Spor Yüksekokulu. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi, 119-126. https://doi.org/10.1501/sporm_0000000141
Herrera, M. J., Hermoso, M. A., & Quera, R. (2009). An update on the pathogenesis of celiac disease. Revista Medica de Chile, 137(12), 1617-1626.
Hsieh, A., Adelstein, S., McLennan, S. V., Williams, P. F., Chua, E. L., & Twigg, S. M. (2019). Liver enzyme profile and progression in association with thyroid autoimmunity in graves' disease. Endocrinology, Diabetes & Amp; Metabolism, 2(4). https://doi.org/10.1002/edm2.86
Iversen, R., & Sollid, L. M. (2023). The immunobiology and pathogenesis of celiac disease. Annual Review of Pathology: Mechanisms of Disease, 18, 47-70. https://doi.org/10.1146/annurev-pathmechdis-031521-032634
Johny, A., Berge, G. M., Bogevik, A. S., Krasnov, A., Ruyter, B., Fæste, C. K., & Østbye, T. K. (2020). Sensitivity to dietary wheat gluten in atlantic salmon indicated by gene expression changes in liver and intestine. Genes, 11(11), 1339. https://doi.org/10.3390/genes11111339
İmik, A., Gezer, C., & Terim Kapakin, K. A. (2024). Investigation of the Effect of Wheat and Corn Gluten on Inflammation, Transglutaminase, Gliadin and Ig A Levels in Healthy Rat Intestines. Veterinary Sciences and Practices. AUJVS-2023-49-190, In Press
İmik, H., Kapakin, K. A. T., Karabulutlu, Ö., Gümüş, R., Çomaklı, S., & Özkaraca, M. (2023). The Effects of Dietary Wheat and Corn Glutens on the Histopathological and Immunohistochemical Structure of the Ovarian Tissue and Serum and Ovarian Tissue LH and FSH Levels and Lipid Profiles in Rats. Brazilian Archives of Biology and Technology, 66: e23210726. https://doi.org/10.1590/1678-4324-2023210726
Kalas, M. A., Chavez, L., Leon, M., Taweesedt, P. T., & Surani, S. (2021). Abnormal liver enzymes: A review for clinicians. World Journal of Hepatology, 13(11), 1688. https://doi.org/10.4254/wjh.v13.i11.1688
Kasarala, G., & Tillmann, H. L. (2016). Standard liver tests. Clinical Liver Disease, 8(1), 13-18. https://doi.org/ 10.1002/cld.562
Khatri, P., Neupane, A., Sapkota, S. R., Bashyal, B., Sharma, D., Chhetri, A., Chirag, K. C., Banjade, A., Sapkota, P., & Bhandari, S. (2021). Strenuous exercise-induced tremendously elevated transaminases levels in a healthy adult: A diagnostic dilemma. Case Reports in Hepatology, Article ID 6653266. https://doi.org/10.1155/2021/6653266
Kim, J. V., & Wu, G. Y. (2020). Body building and aminotransferase elevations: a review. Journal of Clinical and Translational Hepatology, 8(2), 161. https://doi.org/10.14218/JCTH.2020.00005
Koçer, M., Avcı, A., & Satar, S. (2016). Rabdomiyoliz. Arşiv Kaynak Tarama Dergisi, 25(23783), 586-607. https://doi.org/10.17827/aktd.253567
Lebwohl, B., & Rubio-Tapia, A. (2021). Epidemiology, presentation, and diagnosis of celiac disease. Gastroenterology, 160(1), 63-75. https://doi.org/10.1053/j.gastro.2020.06.098
Lu, G., & Hooi, S. C. (2017). Lipid metabolism in liver cancer. Updates in Liver Cancer, 49-67. https://dx.doi.org/10.5772/64993
Lyu, W., Xiang, Y., Wang, X., Li, J., Yang, C., Yang, H., & Xiao, Y. (2022). Differentially expressed hepatic genes revealed by transcriptomics in pigs with different liver lipid contents. Oxidative Medicine and Cellular Longevity, 1-16. https://doi.org/10.1155/2022/2315575
Marietta, E. V., David, C. S., & Murray, J. A. (2011). Important lessons derived from animal models of celiac disease. International Reviews of İmmunology, 30(4), 197-206. https://doi.org/10.3109/08830185.2011.598978
Marietta, E. V., & Murray, J. A. (2012). Animal models to study gluten sensitivity. Seminars in Immunopathology, 34(4), 497-511. https://doi.org/10.1007/s00281-012-0315-y
Messina, M., Piccolo, G., Tulli, F., Messina, C. M., Cardinaletti, G., & Tibaldi, E. (2013). Lipid composition and metabolism of European sea bass (Dicentrarchus labrax L.) fed diets containing wheat gluten and legume meals as substitutes for fish meal. Aquaculture, 376, 6-14. https://doi.org/10.1016/j.aquaculture.2012.11.005
Mitra, E., Bhattacharjee, B., Pal, P. K., Ghosh, A. K., Mishra, S., Chattopadhyay, A., & Bandyopadhyay, D. (2019). Melatonin protects against cadmium-induced oxidative damage in different tissues of rat: a mechanistic insight. Melatonin Research, 2(2), 1-21. https://doi.org/10.32794/mr11250018
Mo, Q., Liu, Y., Zhou, Z., Li, R., Gong, W., Xiang, B., Tang, W., & Yu, H. (2022). Prognostic value of aspartate transaminase/alanine transaminase ratio in patients with hepatitis b virus-related hepatocellular carcinoma undergoing hepatectomy. Frontiers in Oncology, 12, 876900. https://doi.org/10.3389/fonc.2022.876900
Mokady, S., & Einav, P. (1978). Effect of dietary wheat gluten on lipid metabolism in growing rats. Annals of Nutrition and Metabolism, 22(3), 181-189. https://doi.org/10.1159/000176214
Nallagangula, K. S., Nagaraj, S. K., Lakshmaiah, V., & Muninarayana, C. (2018). Liver fibrosis: a compilation on the biomarkers status and their significance during disease progression. Future Science OA, 4(1), FSO250. https://doi.org/10.4155/fsoa-2017-0083
Park, T. J., Hwang, J., Go, M. J., Lee, H., Jang, H. B., Choi, Y., Kang, J. H., Park, K. H., Choi, M., Song, J., Kim, B., & Lee, J. (2013). Genome-wide association study of liver enzymes in korean children. Genomics Inform, 11(3), 149. https://doi.org/10.5808/gi.2013.11.3.149
Parmar, K. S., Singh, G. K., Gupta, G. P., Pathak, T., & Nayak, S. (2016). Evaluation of De Ritis ratio in liver-associated diseases. International Journal of Medical Science and Public Health, 5(9), 1783. https://doi.org/10.5455/ijmsph.2016.24122015322
Patra, S., Bera, S., Roy, S. S., Ghoshal, S., Ray, S., Basu, A., Schlattner, U., Wallimann, T., & Ray, M. (2008). Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. The FEBS Journal, 275(12), 3236-3247. https://doi.org/10.1111/j.1742-4658.2008.06475.x
Prati, D., Taioli, E., Zanella, A., Torre, E. D., Butelli, S., Del Vecchio, E., Vianello, L., Zanuso, F., Mozzi, F., Milani, S., Conte, D., Colombo, M., & Sirchia, G. (2002). Updated definitions of healthy ranges for serum alanine aminotransferase levels. Annals of Internal Medicine, 137(1), 1-10. https://doi.org/10.7326/0003-4819-137-1-200207020-00006
Rigopoulou, E. I., Gatselis, N., Arvaniti, P., Koukoulis, G. K., & Dalekos, G. N. (2021). Alcoholic liver disease and autoimmune hepatitis: Sometimes a closer look under the surface is needed. European Journal of Internal Medicine, 85, 86-91. https://doi.org/10.1016/j.ejim.2020.12.024
Rojas, O. J., Liu, Y. Y., & Stein, H. (2013). Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs. Journal of Animal Science, 91(11), 5326-5335. https://doi.org/10.2527/jas.2013-6324
Romarheim, O. H., Skrede, A., Penn, M., Mydland, L. T., Krogdahl, Å., & Storebakken, T. (2008). Lipid digestibility, bile drainage and development of morphological intestinal changes in rainbow trout (Oncorhynchus mykiss) fed diets containing defatted soybean meal. Aquaculture, 274(2-4), 329-338. https://doi.org/10.1016/j.aquaculture.2007.11.035
Scappaticcio, L., Longo, M., Maiorino, M. I., Pernice, V., Caruso, P., Esposito, K., & Bellastella, G. (2021). Abnormal liver blood tests in patients with hyperthyroidism: systematic review and meta-analysis. Thyroid, 31(6), 884-894. https://doi.org/10.1089/thy.2020.0715
Sharma, P. (2022). Value of liver function tests in cirrhosis. Journal of Clinical and Experimental Hepatology, 12(3), 948-964. https://doi.org/10.1016/j.jceh.2021.11.004
Soudani, N., Bouaziz, H., Sefi, M., Chtourou, Y., Boudawara, T., & Zeghal, N. (2011). Toxic effects of chromium (vi) by maternal ingestion on liver function of female rats and their suckling pups. Environmental Toxicology, 28(1), 11-20. https://doi.org/10.1002/tox.20692
Şahin, H. H. K., Yavsan, M., Toker, A., Tasyurek, E., Tosun, M., Teke, T., Uzun, K., & Dülger, H. (2014). The assessment of effects of noninvasive mechanical ventilation application on markers of muscle injury and ischemia. European Journal of Basic Medical Sciences, 4(2), 29-36. https://doi.org/10.15197/sabad.2.4.06
Toret, E., Kar, Y. D., Turhan, A. B., Özdemir, Z. C., & Özcan, B. Ö. R. (2020). Çocukluk Çağı Akut Lösemilerinin Tanı ve Laboratuvar Özellikleri. Osmangazi Tıp Dergisi, 42(3), 296-300. https://doi.org/10.20515/otd.540255
Torkadi, P. P., Apte, I. C., & Bhute, A. K. (2014). Biochemical evaluation of patients of alcoholic liver disease and non-alcoholic liver disease. Indian Journal of Clinical Biochemistry, 29, 79-83. https://doi.org/10.1007/s12291-013-0310-7
Urrego, M. I. G., Pedreira, R. S., Santos, K. d. M., Ernandes, M. C., Santos, J. P. F., Vendramini, T. H. A., Eberlin, M. N., Balieiro, J. C. d. C., Pontieri, C. F. F., & Brunetto, M. A. (2021). Dietary protein sources and their effects on faecal odour and the composition of volatile organic compounds in faeces of french bulldogs. Journal of Animal Physiology and Animal Nutrition, 105(S1), 65-75. https://doi.org/10.1111/jpn.13605
Van den Broeck, H. C., de Jong, H. C., Salentijn, E. M., Dekking, L., Bosch, D., Hamer, R. J., Gilissen J. W. J., Van der Meer, M., & Smulders, M. J. (2010). Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theoretical and Applied Genetics, 121, 1527-1539. https://doi.org/10.1007/s00122-010-1408-4
Veličković, D., Milenković, S., & Stojanović, D. (2011). Enzymochemical and biochemical changes in the liver of rats induced by furfural. Acta Medica Medianae, 50(2), 34-38. https://doi.org/10.5633/amm.2011.0206
Wang, S., Xu, Q., Qu, K., Wang, J., & Zhou, Z. (2021). Cyp1a2 polymorphism may contribute to agomelatine-induced acute liver injury. Medicine, 100(45), e27736. https://doi.org/10.1097/md.0000000000027736
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.