Dietary Supplementation of Solid-state Fermented Yellow Mealworm (Tenebrio molitor) Larvae Meal Enriched by Lactobacillus sp. in Guppy (Poecilia reticulata)
DOI:
https://doi.org/10.24925/turjaf.v13i1.181-193.6915Keywords:
Guppy, gut microbiota, ornamental fish, prebiotic, feed additiveAbstract
The current study examined the dietary solid-state fermented yellow mealworm (Tenebrio molitor) larvae meal inclusion on growth performance, gut microbiota, body composition, liver and intestinal histology and histomorphometric parameters in the guppy (Poecilia reticulata) for 84 days. Guppies were fed diets included with no supplementation (C); 4 g/kg yellow mealworm larva meal (G1), 4 g/kg solid-state fermented with Lactobacillus brevis yellow mealworm larvae meal (G2), 4 g/kg solid-state fermented with Lactobacillus plantarum yellow mealworm larvae meal (G3), the combination of 2 g/kg solid-state fermented with L. brevis plus 2 g/kg solid-state fermented with L. plantarum yellow mealworm larvae meal (G4). For female guppies, the growth performance of the G4 group clearly differed from all groups with the synergistic effect of solid-state fermented with L. plantarum plus L. brevis. In male guppies, G3 and G4 groups showed the highest growth performance values among all groups. The intestinal microbiota of guppies was clearly varied with supplementation groups. Fusobacteria was the most abundant phylum in C, G1, G2 and G3 groups. However, Proteobacteria showed the most intensity in the G4 group. Intestinal villus height, width and surface area were positively affected in solid-state fermented yellow mealworm larvae meal supplementation groups, reaching higher values in G3 and G4 groups. In conclusion, solid-state fermented yellow mealworm larvae meal via 2 g/kg L. plantarum plus 2 g/kg L. brevis can improve growth performance by modulating the gut microbiota of guppies.
References
Lawrence, M. L., & Karsi, A. (2019). Effects of florfenicol feeding on diversity and composition of the intestinal microbiota of channel catfish (Ictalurus punctatus). Aquaculture Research, 50(12), 3663-3672. https://doi.org/10.1111/are.14325
Ahmadniaye Motlagh, H., Paolucci, M., Lashkarizadeh Bami, M., & Safari, O. (2020). Sexual parameters, digestive enzyme activities, and growth performance of guppy (Poecilia reticulata) fed garlic (Allium sativum) extract supplemented diets. Journal of the World Aquaculture Society, 51(5), 1087-1097. https://doi.org/10.1111/jwas.12729
Antonopoulou, E., Nikouli, E., Piccolo, G., Gasco, L., Gai, F., Chatzifotis, S., Mente, E., & Kormas, K. A. (2019). Reshaping gut bacterial communities after dietary Tenebrio molitor larvae meal supplementation in three fish species. Aquaculture, 503, 628-635. https://doi.org/10.1016/j.aquaculture.2018.12.013
AOAC. (2003). Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists.
Basto, A., Matos, E., & Valente, L. M. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521, 735085. https://doi.org/10.1016/j.aquaculture.2020.735085
Benzertiha, A., Kierończyk, B., Kołodziejski, P., Pruszyńska–Oszmałek, E., Rawski, M., Józefiak, D., & Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens' growth performance and immune system traits. Poultry Science, 99(1), 196-206. https://doi.org/10.3382/ps/pez450
Benzertiha, A., Kierończyk, B., Rawski, M., Józefiak, A., Kozłowski, K., Jankowski, J., & Józefiak, D. (2019). Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals, 9(1128), 1-12. https://doi.org/10.3390/ani9121128
Biancarosa, I., Sele, V., Belghit, I., Ørnsrud, R., Lock, E. J., & Amlund, H. (2019). Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Additives Contaminants: Part A, 36(8), 1191-1205. https://doi.org/10.1080/19440049.2019.1619938
Bowyer, P. H., El-Haroun, E. R., Salim, H. S., & Davies, S. J. (2020). Benefits of a commercial solid-state fermentation (SSF) product on growth performance, feed efficiency and gut morphology of juvenile Nile tilapia (Oreochromis niloticus) fed different UK lupin meal cultivars. Aquaculture, 523(735192). https://doi.org/10.1016/j.aquaculture.2020.735192
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC bioinformatics, 10(1), 1-9. https://doi.org/10.1186/1471-2105-10-421
Chabrillón, M., Rico, R. M., Arijo, S., Diaz-Rosales, P., Balebona, M. C., & Moriñigo, M. A. (2005b). Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). Journal of Fish Diseases, 28(9), 531-537. https://doi.org/10.1111/j.1365-2761.2005.00657.x
Chabrillón, M., Rico, R. M., Balebona, M. C., & Moriñigo, M. A. (2005a). Adhesion to sole, Solea senegalensis Kaup, mucus of microorganisms isolated from farmed fish, and their interaction with Photobacterium damselae subsp. piscicida. Journal of Fish Diseases, 28(4), 229-237. https://doi.org/10.1111/j.1365-2761.2005.00623.x
Chemello, G., Renna, M., Caimi, C., Guerreiro, I., Oliva-Teles, A., Enes, P., Biasato, I., Schiavone, A., Gai, F., & Gasco, L. (2020). Partially defatted Tenebrio molitor larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): Effects on growth performance, diet digestibility and metabolic responses. Animals, 10(229), 1-15. https://doi.org/10.3390/ani10020229
Chi, C., Jiang, B., Yu, X. B., Liu, T. Q., Xia, L., & Wang, G. X. (2014). Effects of three strains of intestinal autochthonous bacteria and their extracellular products on the immune response and disease resistance of common carp, Cyprinus carpio. Fish and Shellfish Immunology, 36(1), 9-18. https://doi.org/10.1016/j.fsi.2013.10.003
Davies, S. J., El-Haroun, E. R., Hassaan, M. S., & Bowyer, P. H. (2021). A solid-state fermentation (SSF) supplement improved performance, digestive function and gut ultrastructure of rainbow trout (Oncorhynchus mykiss) fed plant protein diets containing yellow lupin meal. Aquaculture, 545, 737177. https://doi.org/10.1016/j.aquaculture.2021.737177
Dawood, M. A., Eweedah, N. M., Khalafalla, M. M., Khalid, A., El Asely, A., Fadl, S. E., Amin, A. A., Paray, B. A., & Ahmed, H. A. (2020a). Saccharomyces cerevisiae increases the acceptability of Nile tilapia (Oreochromis niloticus) to date palm seed meal. Aquaculture Reports, 17(100314), 1-10. https://doi.org/10.1016/j.aqrep.2020.100314
Dawood, M. A., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Reviews in Aquaculture, 10(4), 950-974. https://doi.org/10.1111/raq.12209
Dawood, M. A., Magouz, F. I., Essa, M., & Mansour, M. (2020b). Impact of yeast fermented poultry by-product meal on growth, digestive enzyme activities, intestinal morphometry and immune response traits of Common Carp (Cyprinus carpio). Annals of Animal Science, 20(3), 939-959. https://doi.org/10.2478/aoas-2020-0021
Deng, Y., Verdegem, M. C., Eding, E., & Kokou, F. (2022). Effect of rearing systems and dietary probiotic supplementation on the growth and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 546(737297), 1-11. https://doi.org/10.1016/j.aquaculture.2021.737297
European Commission, (2017). Commission Regulation (EU) 2021/1925 of 5 November 2021 Amending Certain Annexes to Regulation (EU) No 142/2011 as Regards the Requirements for Placing on the Market of Certain Insect Products and the Adaptation of a Containment Method. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1925 (accessed on 15 July 2024).
Evers, H. G., Pinnegar, J. K., & Taylor, M. I. (2019). Where are they all from? – Sources and sustainability in the ornamental freshwater fish trade. Journal of Fish Biology, 94(6), 909-916. https://doi.org/10.1111/jfb.13930
Feng, P., He, J., Lv, M., Huang, G., Chen, X., Yang, Q., Wang, J., & Ma, H. (2019). Effect of dietary Tenebrio molitorprotein on growth performance and immunological parameters in Macrobrachium rosenbergii. Aquaculture, 511, 734247. https://doi.org/10.1016/j.aquaculture.2019.734247
Finke, M. (2007). An estimate of chitin in raw whole insects. Zoo Biology, 26(2), 105-115. https://doi.org/10.1002/zoo.20123
Gajardo, K., Rodiles, A., Kortner, T. M., Krogdahl, Å., Bakke, A. M., Merrifield, D. L., & Sørum, H. (2016). A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research. Scientific Reports, 6(1), 1-10. https://doi.org/10.1038/srep30893
Ganguly, S., & Prasad, A. (2012). Microflora in fish digestive tract plays significant role in digestion and metabolism. Reviews in Fish Biology and Fisheries, 22(1), 11-16. https://doi.org/10.1007/s11160-011-9214-x
Ge, C., Cheng, H., Li, J., Wang, H., Ma, S., Qin, Y., & Xue, M. (2022). Effects of defatted yellow mealworm (Tenebrio molitor) on the feed qualities and the growth performance of largemouth bass (Micropterus salmoides). Journal of Insects as Food and Feed, 1, 15. https://doi.org/10.3920/JIFF2021.0125
Ghamkhar, R., & Hicks, A. (2020). Comparative environmental impact assessment of aquafeed production: Sustainability implications of forage fish meal and oil free diets. Resources, Conservation and Recycling, 161, 104849. https://doi.org/10.1016/j.resconrec.2020.104849
Ghanbari, M., Kneifel, W., & Domig, K. J. (2015). A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture, 448, 464-475. https://doi.org/10.1016/j.aquaculture.2015.06.033
Giri, S. S., Sen, S. S., Chi, C., Kim, H. J., Yun, S., Park, S. C., & Sukumaran, V. (2015). Effect of cellular products of potential probiotic bacteria on the immune response of Labeo rohita and susceptibility to Aeromonas hydrophila infection. Fish and Shellfish Immunology, 46(2), 716-722. https://doi.org/10.1016/j.fsi.2015.08.012
Giri, S. S., Sen, S. S., Jun, J. W., Park, S. C., & Sukumaran, V. (2016). Heat-killed whole-cell products of the probiotic Pseudomonas aeruginosa VSG2 strain affect in vitro cytokine expression in head kidney macrophages of Labeo rohita. Fish and Shellfish Immunology, 50, 310-316. https://doi.org/10.1016/j.fsi.2016.02.007
Giri, S. S., Sukumaran, V., Sen, S. S., Vinumonia, J., Banu, B. N., & Jena, P. K. (2011). Antagonistic activity of cellular components of potential probiotic bacteria, isolated from the gut of Labeo rohita, against Aeromonas hydrophila. Probiotics and Antimicrobial Proteins, 3(3), 214-222. https://doi.org/10.1007/s12602-011-9078-3
Gu, J., Liang, H., Ge, X., Xia, D., Pan, L., Mi, H., & Ren, M. (2022). A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish and Shellfish Immunology, 120, 214-221. https://doi.org/10.1016/j.fsi.2021.11.024
Hao, K., Wu, Z. Q., Li, D. L., Yu, X. B., Wang, G. X., & Ling, F. (2017). Effects of dietary administration of Shewanella xiamenensis A-1, Aeromonas veronii A-7, and Bacillus subtilis, single or combined, on the grass carp (Ctenopharyngodon idella) intestinal microbiota. Probiotics and Antimicrobial Proteins, 9(4), 386-396. https://doi.org/10.1007/s12602-017-9269-7
Henry, M. A., Gasco, L., Chatzifotis, S., & Piccolo, G. (2018). Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor, on European sea bass (Dicentrarchus labrax). Developmental Comparative Immunology, 81, 204-209. https://doi.org/10.1016/j.dci.2017.12.002
Hong, J., Han, T., & Kim, Y. Y. (2020). Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: A review. Animals, 10(11), 2068. https://doi.org/10.3390/ani10112068
Hood, R., Zabatiero, J., Silva, D., Zubrick, S. R., & Straker, L. (2021). “Coronavirus Changed the Rules on Everything”: Parent Perspectives on How the COVID-19 Pandemic Influenced Family Routines, Relationships and Technology Use in Families with Infants. International Journal of Environmental Research and Public Health, 18(23), 12865. https://doi.org/10.3390/ijerph182312865
Ido, A., Hashizume, A., Ohta, T., Takahashi, T., Miura, C., & Miura, T. (2019). Replacement of fish meal by defatted yellow mealworm (Tenebrio molitor) larvae in diet improves growth performance and disease resistance in red seabream (Pargus major). Animals, 9(3), 100. https://doi.org/10.3390/ani9030100
Illumina. (2020). 16S metagenomic library preparation guide.
Ingerslev, H. C., von Gersdorff Jørgensen, L., Strube, M. L., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424, 24-34. https://doi.org/10.1016/j.aquaculture.2013.12.032
Islam, M. M., & Yang, C. J. (2017). Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poultry Science, 96(1), 27-34. https://doi.org/10.3382/ps/pew220
Jeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences, 23(1), 1-8. https://doi.org/10.1186/s41240-020-00158-7
Jeong, S. M., Khosravi, S., Yoon, K. Y., Kim, K. W., Lee, B. J., Hur, S. W., & Lee, S. M. (2021). Mealworm, Tenebrio molitor, as a feed ingredient for juvenile olive flounder, Paralichthys olivaceus. Aquaculture Reports, 20, 100747. https://doi.org/10.1016/j.aqrep.2021.100747
Józefiak, A., Benzertiha, A., Kierończyk, B., Łukomska, A., Wesołowska, I., & Rawski, M. (2020). Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals, 10(4), 577. https://doi.org/10.3390/ani10040577
Józefiak, A., Nogales-Mérida, S., Rawski, M., Kierończyk, B., & Mazurkiewicz, J. (2019). Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Veterinary Research, 15(1), 1-11. https://doi.org/10.1186/s12917-019-2070-y
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1-e1. https://doi.org/10.1093/nar/gks808
Kowalska, J., Rawski, M., Homska, N., Mikołajczak, Z., Kierończyk, B., Świątkiewicz, S., Wachowiak, R., Hetmańczyk, K., & Mazurkiewicz, J. (2022). The first insight into full-fat superworm (Zophobas morio) meal in guppy (Poecilia reticulata) diets: A study on multiple-choice feeding preferences and growth performance. Annals of Animal Science, 22(1), 371-384. https://doi.org/10.2478/aoas-2021-0072
Lin, H. L., Shiu, Y. L., Chiu, C. S., Huang, S. L., & Liu, C. H. (2017). Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish and Shellfish Immunology, 60, 474-482. https://doi.org/10.1016/j.fsi.2016.11.026
Luparelli, A. V., Hadj Saadoun, J., Lolli, V., Lazzi, C., Sforza, S., & Caligiani, A. (2022). Dynamic changes in molecular composition of black soldier fly prepupae and derived biomasses with microbial fermentation. Food Chemistry X, 14, 1-9. https://doi.org/10.1016/j.fochx.2022.100327
Mastoraki, M., Ferrándiz, P. M., Vardali, S. C., Kontodimas, D. C., Kotzamanis, Y. P., Gasco, L., Chatzifotis, S., & Antonopoulou, E. (2020). A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture, 528, 735511. https://doi.org/10.1016/j.aquaculture.2020.735511
Menezes, A. G. T., Ramos. C. L., & Dias, D. R. (2018). Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res Int, 111,187-197. https://doi.org/10.1016/j.foodres.2018.04.065
Mikołajczak, Z., Rawski, M., Mazurkiewicz, J., Kierończyk, B., & Józefiak, D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10(6), 1031. https://doi.org/10.3390/ani10061031
Mulyono, M., Yunianto, V. D., Suthama, N., & Sunarti, D. (2019). The effect of fermentation time and Trichoderma levels on digestibility and chemical components of Black Soldier fly (Hermetia illucens) larvae. Livestock Research for Rural Development, 31(10).
Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12(1), 1-10. http://www.biomedcentral.com/1471-2105/12/385
Parata, L., Mazumder, D., Sammut, J., & Egan, S. (2020). Diet type influences the gut microbiome and nutrient assimilation of Genetically Improved Farmed Tilapia (Oreochromis niloticus). PloS One, 15(8), e0237775. https://doi.org/10.1371/journal.pone.0237775
Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitorlarvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. https://doi.org/10.1016/j.anifeedsci.2017.02.007
Quang Tran, H., Van Doan, H., & Stejskal, V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Reviews in Aquaculture, 14(1), 237-251. https://doi.org/10.1111/raq.12595
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219
Rahmati-Holasoo, H., Marandi, A., Ebrahimzadeh Mousavi, H., & Taheri Mirghaed, A. (2022). Parasitic fauna of farmed freshwater ornamental fish in the northwest of Iran. Aquaculture International, 30(2), 633-652. https://doi.org/10.1007/s10499-021-00832-0
Rašković, B., Stanković, M., Marković, Z., & Poleksić, V. (2011). Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences (Belgrade), 56(1), 87-100. https://doi.org/10.2298/JAS1101087R
Rema, P., Saravanan, S., Armenjon, B., Motte, C., & Dias, J. (2019). Graded incorporation of defatted yellow mealworm (Tenebrio molitor) in rainbow trout (Oncorhynchus mykiss) diet improves growth performance and nutrient retention. Animals, 9(4), 187. https://doi.org/10.3390/ani9040187
Roeselers, G., Mittge, E. K., Stephens, W. Z., Parichy, D. M., Cavanaugh, C. M., Guillemin, K., & Rawls, J. F. (2011). Evidence for a core gut microbiota in the zebrafish. The ISME Journal, 5(10), 1595-1608. https://doi.org/10.1038/ismej.2011.38
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584
Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2021). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish and Shellfish Immunology, 120, 569-589. https://doi.org/10.1016/j.fsi.2021.12.037
Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/j.ifset.2012.11.005
Sánchez-Muros, M., De Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition, 22(5), 943-955. https://doi.org/10.1111/anu.12313
Sankian, Z., Khosravi, S., Kim, Y. O., & Lee, S. M. (2018). Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture, 496, 79-87. https://doi.org/10.1016/j.aquaculture.2018.07.012
Senol, M., Nadaroglu, H., Dikbas, N., & Kotan, R. (2014). Purification of chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Annals of Clinical Microbiology and Antimicrobials, 13(35), 1-7. http://www.ann-clinmicrob.com/content/13/1/35
Shi, H., Zhang, M., Wang, W., & Devahastin, S. (2020). Solid-state fermentation with probiotics and mixed yeast on properties of okara. Food Biosci, 36, 1-8. https://doi.org/10.1016/j.fbio.2020.100610
Son, Y. J., Hwang, I. K., Nho, C. W., Kim, S. M., & Kim, S. H. (2021). Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan. Foods, 10(640), 1-15. https://doi.org/10.3390/foods10030640
Spens, J., Evans, A. R., Halfmaerten, D., Knudsen, S. W., Sengupta, M. E., Mak, S. S., Sigsgaard, E. E., & Hellström, M. (2016). Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods in Ecology and Evolution, 8(5), 635-645. https://doi.org/10.1111/2041-210X.12683
Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., & Xie, S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 69, 59-66. https://doi.org/10.1016/j.fsi.2017.08.008
Sultana, K. H., Rahman, M. R., Haque, M. E., Nayma, Z., & Mukta, F. A. (2022). Potentiality of Nannochloropsis sp. as partial dietary replacement of fishmeal on growth, proximate composition, pigment and breeding performance in guppy (Poecilia reticulata). Bioresource Technology Reports, 101112. https://doi.org/10.1016/j.biteb.2022.101112
Tan, H. Y., Chen, S. W., & Hu, S. Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 92, 265-275. https://doi.org/10.1016/j.fsi.2019.06.027
Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 1-14. https://doi.org/10.1186/s40104-021-00551-9
Terova, G., Rimoldi, S., Ascione, C., Gini, E., Ceccotti, C., & Gasco, L. (2019). Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Reviews in Fish Biology and Fisheries, 29(2), 465-486. https://doi.org/10.1007/s11160-019-09558-y
Tlusty, M. F., Rhyne, A. L., Kaufman, L., Hutchins, M., Reid, G. M., Andrews, C., Boyle, P., Hemdal, J., McGilvray, F., & Dowd, S. (2013). Opportunities for public aquariums to increase the sustainability of the aquatic animal trade. Zoo Biology, 32(1), 1-12. https://doi.org/10.1002/zoo.21019
Tran, H. Q., Prokešová, M., Zare, M., Matoušek, J., Ferrocino, I., Gasco, L., & Stejskal, V. (2022). Production performance, nutrient digestibility, serum biochemistry, fillet composition, intestinal microbiota and environmental impacts of European perch (Perca fluviatilis) fed defatted mealworm (Tenebrio molitor). Aquaculture, 547, 737499. https://doi.org/10.1016/j.aquaculture.2021.737499
Wang, & Jin X. (2019). Lactic acid bacteria in animal breeding and aquaculture. In Lactic Acid Bacteria (pp. 257-283). Springer, Singapore. https://doi.org/10.1007/978-981-13-7283-4_10
Wang, C., Shi, C., Zhang, Y., Song, D., Lu, Z., & Wang, Y. (2018). Microbiota in fermented feed and swine gut. Applied Microbiology and Biotechnology, 102(7), 2941-2948. https://doi.org/10.1007/s00253-018-8829-4
Wang, L., Zhou, H., He, R., Xu, W., Mai, K., & He, G. (2016). Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture, 464, 87-94. https://doi.org/10.1016/j.aquaculture.2016.06.026
Wang, RF., An, XP., Wang, Y., Qi, JW., Zhang, J., Liu, YH., Weng, MQ., Yang, YP., & Gao, AQ. (2020). Effects of polysaccharide from fermented wheat bran on growth performance, muscle composition, digestive enzyme activities and intestinal microbiota in juvenile common carp. Aquaculture Nutrition, 26(4), 1096-1107. https://doi.org/10.1111/anu.13067
Wu, ZQ., Jiang, C., Ling, F., & Wang, GX. (2015). Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus). Aquaculture, 438, 105 114. https://doi.org/10.1016/j.aquaculture.2014.12.041
Yang, H., Bian, Y., Huang, L., Lan, Q., Ma, L., Li, X., & Leng, X. (2022). Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides). Aquaculture Reports, 22, 100954. https://doi.org/10.1016/j.aqrep.2021.100954
Zdanovich, V. V. (2023). Sexual Behavior and Reproductive Success of Guppy Poecillia reticulata (Poeciliidae) at a Constant Temperature and in the Temperature Gradient Field. Journal of Ichthyology, 63(5), 969-974. https://doi.org/10.1134/S0032945223050168
Zhang, M., Pan, L., Fan, D., He, J., Su, C., Gao, S., & Zhang, M. (2021). Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. Aquaculture, 530, 735703. https://doi.org/10.1016/j.aquaculture.2020.735703
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.