Investigation of the Antioxidant Potential of Kombucha Prepared Using Salvia officinalis L.
DOI:
https://doi.org/10.24925/turjaf.v12is2.2292-2297.7022Keywords:
Fermentation, Kombucha, S. officinalis, Antioxidant, Fermented beverageAbstract
Kombucha is a slightly acidic sugary drink made by fermenting sweetened tea. It is known for its numerous health advantages. The objective of this study is to explore the possible effects of Salvia officinalis on enhancing the biochemical characteristics of kombucha. The present investigation compared traditional kombucha, produced using green and black tea, with kombucha derived from S. officinalis, examining their antioxidant properties, total phenolic, and total flavonoid content. The fermentation process lasted for a duration of 14 days. The present study was performed to evaluate the antioxidant activity of fermented S. officinalis. The antioxidant potential was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and copper (II) reducing antioxidant capacity (CUPRAC) techniques. The DPPH radical reduction percentages were determined to be 93.5±1.65% for kombucha of green tea, 90.6±1.51% for kombucha of black tea, and 88.5±1.68% for kombucha of S. officinalis. According to the CUPRAC results, green tea kombucha was found to have 321.58±2.12 mg TE/g, black tea kombucha 305.91±1.98 mg TE/g and S. officinalis kombucha 301.97±1.78 mg TE/g. Total phenolic content was 154.15±1.22 mg GAE/g for kombucha of green tea, 145.41±1.31 mg GAE/g for kombucha of black tea, and 124.52±1.25 mg GAE/g for kombucha of S. officinalis. The determined value for the total flavonoid content was 101.12±0.98 mg QE/g for kombucha of green tea, 99.41±0.97 mg QE/g for kombucha of black tea, and 92.73±0.78 mg QE/g for kombucha of S. officinalis. The findings indicate that S. officinalis can serve as a substitute medium for kombucha fermentation, resulting in the development of a novel kind of kombucha with similar chemical characteristics.
References
Anantachoke, N., Duangrat, R., Sutthiphatkul, T., Ochaikul, D., & Mangmool, S. (2023). Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods, 12(9), 1818. https://doi.org/10.3390/foods12091818
Barakat, N., Bouajila, J., Beaufort, S., Rizk, Z., Taillandier, P., & El Rayess, Y. (2024). Development of a new kombucha from grape pomace: The impact of fermentation conditions on composition and biological activities. Beverages, 10(2), 29-45. https://doi.org/10.3390/beverages10020029
Belcadi, H., Chraka, A., El Amrani, S., Raissouni, I., Moukhles, A., Zantar, S., Toukour, L., & Mansour, A. I. (2023). Investigation and valorization of the moroccan Salvia officinalis L. essential oil: phytochemistry, potential in corrosion inhibition, antibacterial activity, and theoretical modeling. Journal of Bio-and Tribo-Corrosion, 9(3), 50. https://doi.org/10.1007/s40735-023-00769-2
Ben Akacha, B., Ben Hsouna, A., Generalić Mekinić, I., Ben Belgacem, A., Ben Saad, R., Mnif, W., Kačániová, M., & Garzoli, S. (2023). Salvia officinalis L. and Salvia sclarea essential oils: Chemical composition, biological activities and preservative effects against Listeria monocytogenes inoculated into minced beef meat. Plants, 12(19-31), 3385-3409. https://doi.org/10.3390/plants12193385
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Bressani, A. P. P., Casimiro, L. K. S., Martinez, S. J., Dias, D. R., & Schwan, R. F. (2024). Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Food Research International, 192(2024), 114762. https://doi.org/10.1016/j.foodres.2024.114762
Coelho, R. M. D., de Almeida, A. L., do Amaral, R. Q. G., da Mota, R. N., & de Sousa, P. H. M. (2020). Kombucha. International Journal of Gastronomy and Food Science, 22, 100272. https://doi.org/10.1016/j.ijgfs.2020.100272
de Miranda, J. F., Ruiz, L. F., Silva, C. B., Uekane, T. M., Silva, K. A., Gonzalez, A. G. M., Fernandes, F. F., & Lima, A. R. (2022). Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science, 87(2), 503-527. https://doi.org/10.1111/1750-3841.16029
Diez-Ozaeta, I., & Astiazaran, O. J. (2022). Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. International Journal of Food Microbiology, 377, 109783. https://doi.org/10.1016/j.ijfoodmicro.2022.109783
Dusgun, C. (2024). An investigation of the impact of fermentation conditions and total acid contents on the kombucha tea. Biotechnology Journal International, 28(5), 1-7. https://doi.org/10.9734/bji/2024/v28i5735
Düşgün, C., Kankılıç, T., İşlek, C., Balı, D. F., & Kankılıç, Ö. (2021). Antioxidant and cytotoxic potential of local endemic plant Pastinaca zozimoides Fenzl. Turkish Journal of Agriculture-Food Science and Technology, 9(4), 646-649. https://doi.org/10.24925/turjaf.v9i4.646-649.3715
Feng, X., Ge, Z., Wang, Y., Xia, X., Zhao, B., & Dong, M. (2024). Production and characterization of bacterial cellulose from kombucha-fermented soy whey. Food Production, Processing and Nutrition, 6(1), 20-34. https://doi.org/10.1186/s43014-023-00188-3
Ghorbani, A., & Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine, 7(4), 433-440. https://doi.org/10.1016/j.jtcme.2016.12.014
Gülhan, A. (2023a). Physicochemical, microbiological and sensory analyses of functional detox juices fermented with water kefir grains. Gıda, 48(4), 715-727. https://doi.org/10.15237/gida.GD23039
Gülhan, A. (2023b). Usability of carbon sources as sucrose, honey and agave syrup in fermentation of lemonade with water kefir grains. Sugar Tech, 25(6), 1542-1556. https://doi.org/10.1007/s12355-023-01301-z
Gülhan, A. (2024). Use of ice teas formulated with black teas prepared with different infusion methods and grape juice in the production of water kefir beverages. Food and Humanity, 2, 100219. https://doi.org/10.1016/j.foohum.2023.100219
Gülhan, M. F. (2023c). A new substrate and nitrogen source for traditional kombucha beverage: Stevia rebaudiana leaves. Applied Biochemistry and Biotechnology, 195(7), 4096-4115.
Gülhan, M. F., Gülhan, A., & Düşgün, C. (2024). Physico-chemical and microbiological properties of water kefir produced from carob (Ceratonia siliqua L.) sherbet. Food Science and Biotechnology, 1-12. https://doi.org/10.1007/s10068-024-01682-1
Ildız, E., Canpolat, Ş., İşlek, C., Canpolat, E. Y., İşlek, Y., & Akata, I. (2022). Bjerkandera adusta collected from niğde: analysis of total phenolic compound, antioxidant, vnd antimicrobial properties. Turkish Journal of Agriculture-Food Science and Technology, 10, 2996-3000. https://doi.org/10.24925/turjaf.v10isp2.2996-3000.5750
Jayabalan, R., Marimuthu, S., Thangaraj, P., Sathishkumar, M., Binupriya, A. R., Swaminathan, K., & Yun, S. E. (2008). Preservation of kombucha tea effect of temperature on tea components and free radical scavenging properties. Journal of Agricultural and Food Chemistry, 56(19), 9064-9071. https://doi.org/10.1021/jf8020893
Kaewkod, T., Bovonsombut, S., & Tragoolpua, Y. (2019). Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms, 7(12), 700. https://doi.org/10.3390/microorganisms7120700
Khaleil, M. M., Abd Ellatif, S., Soliman, M. H., Abd Elrazik, E. S., & Fadel, M. S. (2020). A bioprocess development study of polyphenol profile, antioxidant and antimicrobial activities of kombucha enriched with Psidium guajava L. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1204-1210. https://office2.jmbfs.org/index.php/JMBFS/article/view/4505
Liu, Z., Sun, Q., Wang, Y., Liu, J., & Zhu, P. (2024). Preparation and characterization of bacterial cellulose by kombucha using corncob. Cellulose, 1, 1-18. https://doi.org/10.1007/s10570-024-06018-0
Mousavi, S. M., Hashemi, S. A., Zarei, M., Gholami, A., Lai, C. W., Chiang, W. H., Omidifar, N., Bahrani, S., & Mazraedoost, S. (2020). Recent progress in chemical composition, production, and pharmaceutical effects of kombucha beverage: A complementary and alternative medicine. Evidence-Based Complementary and Alternative Medicine, 2020, 1-14. https://doi.org/10.1155/2020/4397543
Ojo, A. O., & de Smidt, O. (2023). Microbial composition, bioactive compounds, potential benefits and risks associated with kombucha: A concise review. Fermentation, 9(5), 472-482. https://doi.org/10.3390/fermentation9050472
Pure, A. E., & Pure, M. E. (2016). Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Applied Food Biotechnology, 3(2), 125-130. https://doi.org/10.22037/afb.v3i2.11138
Selamoglu, Z., Dusgun, C., Akgul, H., & Gulhan, M. F. (2017). In-vitro antioxidant activities of the ethanolic extracts of some contained-allantoin plants. Iranian Journal of Pharmaceutical Research: IJPR, 16(Suppl), 92-98. https://doi.org/10.22037/ijpr.2017.1993
Tapias, Y. A. R., Di Monte, M. V., Peltzer, M. A., & Salvay, A. G. (2022). Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry, 372, 131346. https://doi.org/10.1016/j.foodchem.2021.131346
Tapias, Y. A. R., Di Monte, M. V., Peltzer, M. A., & Salvay, A. G. (2023). Kombucha fermentation in yerba mate: Cellulose production, films formulation and its characterisation. Carbohydrate Polymer Technologies and Applications, 5, 100310. https://doi.org/10.1016/j.carpta.2023.100310
Tu, C., Yu, T., Feng, S., Xu, N., Massawe, A., Shui, S., & Zhang, B. (2024). Dynamics of microbial communities, flavor, and physicochemical properties of kombucha-fermented Sargassum fusiforme beverage during fermentation. LWT, 192, 115729. https://doi.org/10.1016/j.lwt.2024.115729
Velićanski, A. S., Cvetković, D. D., Markov, S. L., Tumbas Šaponjac, V. T., & Vulić, J. J. (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology, 52(4), 420-429. https://doi.org/10.17113/ftb.52.04.14.3611
Xiong, R.-G., Wu, S.-X., Cheng, J., Saimaiti, A., Liu, Q., Shang, A., Zhou, D.-D., Huang, S.-Y., Gan, R.-Y., & Li, H.-B. (2023). Antioxidant activities, phenolic compounds, and sensory acceptability of Kombucha-Fermented beverages from bamboo leaf and mulberry leaf. Antioxidants, 12(8), 1573-1581. https://doi.org/10.3390/antiox12081573
Zeynali, R., Najafian, S., & Hosseinifarahi, M. (2023). Exogenous putrescine changes biochemical (antioxidant activity, polyphenol, flavonoid, and total phenol compounds) and essential oil constituents of Salvia officinalis L. Chemistry & Biodiversity, 20(11), e202301043. https://doi.org/10.1002/cbdv.202301043
Zhang, S., Cheng, M., Li, Z., Guan, S., Cai, B., Li, Q., & Rong, S. (2020). Composition and biological activity of rose and jujube kernel after fermentation with kombucha SCOBY. Journal of Food Processing and Preservation, 44(10), 1-11. https://doi.org/10.1111/jfpp.14758
Zhou, D. D., Saimaiti, A., Luo, M., Huang, S. Y., Xiong, R. G., Shang, A., Gan, R. Y., & Li, H. B. (2022). Fermentation with tea residues enhances antioxidant activities and polyphenol contents in kombucha beverages. Antioxidants, 11(1), 155-171. https://doi.org/10.3390/antiox11010155
Ziemlewska, A., Zagórska-Dziok, M., Nizioł-Łukaszewska, Z., Kielar, P., Mołoń, M., Szczepanek, D., Sowa, I., & Wójciak, M. (2023). In vitro evaluation of antioxidant and protective potential of kombucha-fermented black berry extracts against H2O2-induced oxidative stress in human skin cells and yeast model. International Journal of Molecular Sciences, 24(5), 4388. https://doi.org/10.3390/ijms24054388
Zou, C., Li, R. Y., Chen, J. X., Wang, F., Gao, Y., Fu, Y. Q., Xu, Y. Q., & Yin, J. F. (2021). Zijuan tea-based kombucha: Physicochemical, sensorial, and antioxidant profile. Food Chemistry, 363, 130322. https://doi.org/10.1016/j.foodchem.2021.130322
Zubaidah, E., Dewantari, F. J., Novitasari, F. R., Srianta, I., & Blanc, P. J. (2018). Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198-203. https://doi.org/10.1016/j.bcab.2017.12.012
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.