Nutrition and Antioxidant Potential of Three Cauliflower (Brassica oleracea L. Var. Botrytis) Cultivars Cultivated in Southern Part of Bangladesh
DOI:
https://doi.org/10.24925/turjaf.v13i1.158-168.7065Keywords:
chlorophyll content, carotenoids, antioxidant activity, anthocyanins, nutritional profilesAbstract
This study aimed to evaluate the biochemical and nutritional profiles of three cauliflower cultivars—Valentena, Carotena, and Snow White—focusing on chlorophyll, carotenoids, anthocyanins, vitamin C, flavonoids, phenolics, and antioxidant activity. Uniform curds were harvested at 60 days post-sowing from Baratia, Dumuria, Khulna, and analyzed at Khulna Agricultural University. Valentena exhibited the highest chlorophyll content (40.06±0.39 µg/100g FW chlorophyll a, 28.98±3.35 µg/100g FW chlorophyll b), superior lycopene (8.71±0.38 µg/100g FW) levels. Carotena showed the highest total carotenoid content (60.52±1.76 µg/100g FW) and β-carotene (26.99±0.44 µg/100g FW), while Snow White had the lowest values across most parameters. Valentena also led in anthocyanins (101.56±3.9 mg/L FW) and total flavonoids (79.56±10.36 mg/100g FW), with Carotena having the highest vitamin C content (60.05±2.93 µg/g FW). DPPH assays indicated that Valentena showed the most effective antioxidant (IC50 = 43.65±3.56 mg/mL FW), followed by Carotena and Snow White. Hierarchical clustering and pricipal component analysis (PCA) revealed distinct biochemical profiles: Valentena and Carotena shared similarities in carotenoids and antioxidant activity, whereas Snow White differed significantly. Linear discriminant analysis identified lycopene, chlorophyll b, and β-carotene as major differentiators, highlighting the diverse nutritional and antioxidant properties of these cauliflower varieties. The findings highlight the potential of Carotena and Valentena for health-conscious consumers seeking nutrient-rich, antioxidant benefits in functional meals.
References
Afnani, F., Yanti, J. H., & Pratiwi, W. S. W. (2023). Determination of vitamin C content in bell pepper (Capsicum annuumL.) with different protic polar solvent by uv-vis spectroscopy. Jurnal Kimia Riset, 8(2), 116–123. https://doi.org/10.20473/jkr.v8i2.44865
Ahmed, F. A., & Ali, R. F. M. (2013). Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. BioMed Research International, 1–9. https://doi.org/10.1155/2013/367819
Albano, S., & Miguel, M. (2011). Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 33, 338–343. https://doi.org/10.1016/j.indcrop.2010.11.012
Aleem, S., Tahir, M., Sharif, I., Aleem, M., Najeebullah, M., Nawaz, A., Batool, A., Khan, M. I., & Arshad, W. (2021). Principal component and cluster analyses as tools in the assessment of genetic diversity for late season cauliflower genotypes. Pakistan Journal of Agricultural Research, 34(1), 176-183. https://doi.org/10.17582/journal.pjar/2021/34.1.176.183
Alsaadi, J. (2024). Study of the synergistic antioxidant and antifungal activity of phenols and flavonoids isolated from Salicornia europaea and Opunitia ficus-indica medicinal plants. Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 12079–12089.
Arumugam, D. T., Sona, C., & Maheswari, D. M. U. (2021). Fruits and vegetables as Superfoods: Scope and demand.The Pharma Innovation Journal,10(3), 119-129. https://api.semanticscholar.org/CorpusID:240158496
Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449–454. https://doi.org/10.1016/j.jtusci.2014.11.001
Bhandari, S. R., Chae, Y., & Lee, J. G. (2016). Assessment of phytochemicals, quality attributes,and antioxidant activities in commercial tomato cultivars. Horticultural Science and Technology, 34(5), 677–691. https://doi.org/10.12972/kjhst.20160071
Bhandari, S. R., & Kwak, J. H. (2015). Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules, 20(1), 1228–1243. https://doi.org/10.3390/molecules2001122
Biondi, F., Balducci, F., Capocasa, F., Visciglio, M., Mei, E., Vagnoni, M., Mezzetti, B., & Mazzoni, L. (2021). Environmental conditions and agronomical factors influencing the levels of phytochemicals in brassica vegetables responsible for nutritional and sensorial properties. Applied Sciences, 11(4), 1927. https://doi.org/10.3390/app11041927
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Bux Baloch, A., Xia, X., & Sheikh, S. A. (2015). Proximate and Mineral Compositions of Dried Cauliflower (Brassica Oleracea L.) Grown In Sindh, Pakistan. Journal of Food and Nutrition Research, 3(3), 213–219. https://doi.org/10.12691/jfnr-3-3-14Çoka, İ., & Akınoğlu, G. (2023, February). Functions of carotenoids in plants. In Proceedings of the 5th International Ankara Multidisciplinary Studies Congress (pp. 819–824). Ankara, Turkey.
Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1–10. https://doi.org/10.1016/j.crfs.2019.11.001
Crupi, P., Faienza, M. F., Naeem, M. Y., Corbo, F., Clodoveo, M. L., & Muraglia, M. (2023). Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants, 12(5), 1069. https://doi.org/10.3390/antiox12051069
Davies, K. M., Landi, M., Van Klink, J. W., Schwinn, K. E., Brummell, D. A., Albert, N. W., Chagné, D., Jibran, R., Kulshrestha, S., Zhou, Y., & Bowman, J. L. (2022). Evolution and function of red pigmentation in land plants. Annals of Botany, 130(5), 613–636. https://doi.org/10.1093/aob/mcac109
Dos Reis, L. C. R., De Oliveira, V. R., Hagen, M. E. K., Jablonski, A., Flôres, S. H., & De Oliveira Rios, A. (2015). Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT - Food Science and Technology, 63(1), 177–183. https://doi.org/10.1016/j.lwt.2015.03.089
Favela‐González, K. M., Hernández‐Almanza, A. Y., & De La Fuente‐Salcido, N. M. (2020). The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry, 44(10). https://doi.org/10.1111/jfbc.13414
Fioroni, N., Mouquet-Rivier, C., Meudec, E., Cheynier, V., Boudard, F., Hemery, Y., & Laurent-Babot, C. (2023). Antioxidant capacity of polar and non-polar extracts of four african green leafy vegetables and correlation with polyphenol and carotenoid contents. Antioxidants, 12(9), 1726. https://doi.org/10.3390/antiox12091726
Frestasya, L., & Pangsibidang, R. C. A. (2024). Purple sweet potato antioxidants for oxidative stress caused by intense physical exercise. Pharmacy Education, 24(6), 128–133. https://doi.org/10.46542/pe.2024.246.128133
Galvão, A. C., Souza, P. P., Robazza, W. S., & França, C. A. L. (2020). Capacity of solutions involving organic acids in the extraction of the anthocyanins present in jabuticaba skins (Myrciaria cauliflora) and red cabbage leaves (Brassica oleracea). Journal of Food Science and Technology, 57(11), 3995–4002. https://doi.org/10.1007/s13197-020-04430-5
Ghosh, P., Konar, A., Chatterjee, S., Roy, A., & Dalal, D. D. (2023). Role of plant pigments on human health and environment. In D. R. Jayakumar, D. R. R. Duvvuru, D. A. Kumar, & D. M. M. Laddunuri (Eds.), Research trends in multidisciplinary research (pp. 113–138). AkiNik Publications.
Gordillo, B., Sigurdson, G. T., Lao, F., González-Miret, M. L., Heredia, F. J., & Giusti, M. M. (2018). Assessment of the color modulation and stability of naturally copigmented anthocyanin-grape colorants with different levels of purification. Food Research International, 106, 791–799. https://doi.org/10.1016/j.foodres.2018.01.057
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006
Hashizume, Y., & Tandia, M. (2024). Monoglucosyl rutin, a flavonoid glycoside, improves low-density lipoprotein-cholesterol levels in healthy adults: A randomized controlled trial. Functional Foods in Health and Disease, 14(6), 222–235. https://doi.org/10.31989/ffhd.v14i6.1342
Izadpanah, F., Frede, K., Soltani, F., & Baldermann, S. (2024). Comparison of carotenoid, chlorophyll concentrations and their biosynthetic transcript levels in different coloured cauliflower. Horticultural Plant Journal, 10(3), 743–754. https://doi.org/10.1016/j.hpj.2022.09.014
Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Health‐affecting compounds in Brassicaceae. Comprehensive Reviews in Food Science and Food Safety, 8(2), 31–43. https://doi.org/10.1111/j.1541-4337.2008.00065.x
Johra, F. T., Bepari, A. K., Bristy, A. T., & Reza, H. M. (2020). A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants, 9(11), 1046. https://doi.org/10.3390/antiox9111046
Kar, S., Kundu, S., & Mal, D. (2021). Nutritional Quality of Colored Vegetables: A review.Journal Nutraceuticals and Food Science, 6(9), 37. https://doi.org/10.36648/ipctn.21.06.37
Kelebek, H., & Selli, S. (2012). Wine phenolics: Chemistry, biosynthesis and effects on health. Wine: Types, Production and Health, 387–427.
Khanday, A. H., Badroo, I. A., Wagay, N. A., & Rafiq, S. (2024). Role of phenolic compounds in disease resistance to plants. In R. Lone, S. Khan, & A. Mohammed Al-Sadi (Eds.), Plant Phenolics in Biotic Stress Management (pp. 455–479). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3334-1_19
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779
Kishwar, F., Farheen, R., perween, R., Anwar, A., & Noor, S. (2019). Investigation of vitamin C and physical parameters of conventionally grown Fragaria xananassa (Strawberries) of Sindh. Fuuast Journal of Biology, 9, 175–177.
Koca Bozalan, N., & Karadeniz, F. (2011). Carotenoid profile, total phenolic content, and antioxidant activity of carrots. International Journal of Food Properties, 14(5), 1060–1068. https://doi.org/10.1080/10942910903580918
Kükürt, A., & Gelen, V. (2024). Understanding vitamin C: Comprehensive examination of its biological significance and antioxidant properties. In A. Kükürt & V. Gelen (Eds.), Ascorbic Acid—Biochemistry and Functions. IntechOpen. https://doi.org/10.5772/intechopen.114122
Lanfer-Marquez, U. M., Barros, R. M. C., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8–9), 885–891. https://doi.org/10.1016/j.foodres.2005.02.012
Li, Y., Liu, B., Yu, Y., Li, H., Sun, J., & Cui, J. (2021). 3E-LDA: Three Enhancements to linear discriminant analysis. ACM Transactions on Knowledge Discovery from Data, 15(4), 1–20. https://doi.org/10.1145/3442347
Lichtenthaler, H. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148C, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Liu, W., Cui, X., Zhong, Y., Ma, R., Liu, B., & Xia, Y. (2023). Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacological Research, 193, 106812. https://doi.org/10.1016/j.phrs.2023.106812
Lyu, X., Agar, O. T., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2023). Phenolic compounds profiling and their antioxidant capacity in the peel, pulp, and seed of Australian grown avocado. Antioxidants, 12(1), 185. https://doi.org/10.3390/antiox12010185
Markwell, J., & Namuth, D. (2003). Plant pigments and photosynthesis. Journal of Natural Resources and Life Sciences Education, 32(1), 137–137. https://doi.org/10.2134/jnrlse.2003.0137a
Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers, 8(6), 58. https://doi.org/10.3390/cancers8060058
Martins, T., Barros, A. N., Rosa, E., & Antunes, L. (2023). Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules, 28(14), 5344. https://doi.org/10.3390/molecules28145344
Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. https://doi.org/10.3390/molecules25173809
Minich, D. M. (2019). A Review of the science of colorful, plant-based food and practical strategies for “Eating the rainbow.” Journal of Nutrition and Metabolism, 1(1), 1–19. https://doi.org/10.1155/2019/2125070
Mohammadi, N., Farrell, M., O’Sullivan, L., Langan, A., Franchin, M., Azevedo, L., & Granato, D. (2024). Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: A systematic review of animal and human interventions. Food & Function, 15(7), 3274–3299. https://doi.org/10.1039/D3FO04579J
Mozos, I., Flangea, C., Vlad, D. C., Gug, C., Mozos, C., Stoian, D., Luca, C. T., Horbańczuk, J. O., Horbańczuk, O. K., & Atanasov, A. G. (2021). Effects of anthocyanins on vascular health. Biomolecules, 11(6), 811. https://doi.org/10.3390/biom11060811
Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024). Oxidative Stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. International Journal of Molecular Sciences, 25(6), 3264. https://doi.org/10.3390/ijms25063264
Yasmin, A., Sumi, M. J., Akter, K., Rabbi, R. H. M., Almoallim, H. S., Ansari, M. J., Hossain A. & Imran, S. (2024). Comparative analysis of nutrient composition and antioxidant activity in three dragon fruit cultivars. PeerJ, 12, e17719. http://doi.org/10.7717/peerj.17719
Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. The Scientific World Journal, 2020, 1–7. https://doi.org/10.1155/2020/8780704
Picchi, V., Fibiani, M., & Lo Scalzo, R. (2020). Cauliflower. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 19–32). Elsevier. https://doi.org/10.1016/B978-0-12-812780-3.00002-7
Radünz, M., Camargo, T. M., Raphaelli, C. O., Radünz, A. L., Gandra, E. Á., & Zavareze, R. (2024). Chemical composition, antimicrobial and antioxidant activities of broccoli, kale, and cauliflower extracts. Plant Foods for Human Nutrition. https://doi.org/10.21203/rs.3.rs-4088335/v1
Rodriguez-Mateos, A., Le Sayec, M., & Cheok, A. (2024). Dietary (poly)phenols and cardiometabolic health: From antioxidants to modulators of the gut microbiota. Proceedings of the Nutrition Society, 1–11. https://doi.org/10.1017/S0029665124000156
Roleda, M. Y., Hanelt, D., Kräbs, G., & Wiencke, C. (2004). Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia, 43(5), 603–613. https://doi.org/10.2216/i0031-8884-43-5-603.1
Tawonga R. (2024). Principal Components Analysis for Ordinal Data using R. https://doi.org/10.13140/RG.2.2.16909.55524
Saiwal, N., Dahiya, M., & Dureja, H. (2019). Nutraceutical insight into vegetables and their potential for nutrition mediated healthcare. Current Nutrition & Food Science, 15(5), 441–453. https://doi.org/10.2174/1573401314666180115151107
Salehi, M., & Safaie, N. (2024). Editorial: Endophytic fungi: secondary metabolites and plant biotic and abiotic stress management. Frontiers in Microbiology, 15, 1345210. https://doi.org/10.3389/fmicb.2024.1345210
Scalzo, R. L., Genna, A., Branca, F., Chedin, M., & Chassaigne, H. (2008). Anthocyanin composition of cauliflower (Brassica oleracea L. var. Botrytis) and cabbage (B. oleracea L. var. Capitata) and its stability in relation to thermal treatments. Food Chemistry, 107(1), 136–144. https://doi.org/10.1016/j.foodchem.2007.07.072
Selly Msungu, Pavithravani B. Venkataramana, & Arnold Mushongi. (2022). Characterization of provitamin A status and distribution in commercial grown maize varieties in Tanzania. East African Journal of Science, Technology and Innovation, 3. https://doi.org/10.37425/eajsti.v3i.430
Sharma, N., Singh, R., Pandey, R., & Kaushik, N. (2017). Genetic and biochemical stability assessment of plants regenerated from cryopreserved shoot tips of a commercially valuable medicinal herb Bacopa monnieri (L.) Wettst. In Vitro Cellular & Developmental Biology - Plant, 53(4), 346–351. https://doi.org/10.1007/s11627-017-9826-5
Sharma, S., Katoch, V., Kumar, S., & Chatterjee, S. (2021). Functional relationship of vegetable colors and bioactive compounds: Implications in human health. The Journal of Nutritional Biochemistry, 92, 108615. https://doi.org/10.1016/j.jnutbio.2021.108615
Singh, S., Kalia, P., Meena, R. K., Mangal, M., Islam, S., Saha, S., & Tomar, B. S. (2020). Genetics and expression analysis of anthocyanin accumulation in curd portion of Sicilian purple to facilitate biofortification of Indian cauliflower. Frontiers in Plant Science, 10, Article 1766. https://doi.org/10.3389/fpls.2019.01766
Soengas, P., Velasco, P., Fernández, J. C., & Cartea, M. E. (2021). New vegetable Brassica foods: A promising source of bioactive compounds. Foods, 10(12), 2911. https://doi.org/10.3390/foods10122911
Spagnuolo, C., Moccia, S., & Russo, G. L. (2018). Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry, 153, 105–115. https://doi.org/10.1016/j.ejmech.2017.09.001
Stuckler, D. (2008). Population causes and consequences of leading chronic diseases: A comparative analysis of prevailing explanations. The Milbank Quarterly, 86(2), 273–326. https://doi.org/10.1111/j.1468-0009.2008.00522.x
Sumi, M. J., Thamid, S. S., Rabbi, R. H. Md., & Imran, S. (2024). Comparative analysis of red and green lettuce microgreens under different artificial LED lighting conditions. Archives of Agriculture and Environmental Science, 9(2), 230–235. https://doi.org/10.26832/24566632.2024.090205
Sumi, M. J., Zaman, S. B., Imran, S., Sarker, P., Rhaman, M. S., Gaber, A., Skalicky, M., Moulick, D., & Hossain, A. (2024). An investigation of the pigments, antioxidants and free radical scavenging potential of twenty medicinal weeds found in the southern part of Bangladesh. PeerJ, 12, e17698. https://doi.org/10.7717/peerj.17698
Sumi, M. J., Zaman, S. B., Imran, S., Sarker, P., & Rhaman, M. S. A review on the ethnopharmacological importance and biochemical composition of medicinal plants within the Zingiberaceae family. Plant Science today. https://doi.org/10.14719/pst.3514
Tewari, S., Sehrawat, R., Nema, P. K., & Kaur, B. P. (2017). Preservation effect of high-pressure processing on ascorbic acid of fruits and vegetables: A review: Tewari et al. Journal of Food Biochemistry, 41(1), e12319. https://doi.org/10.1111/jfbc.12319
Uddin, M. S., Millat, Md. S., Baral, P. K., Ferdous, M., Uddin, Md. G., Sarwar, Md. S., & Islam, M. S. (2021). The protective role of vitamin C in the management of COVID-19: A Review. Journal of the Egyptian Public Health Association, 96(1), 33. https://doi.org/10.1186/s42506-021-00095-w
Vanlalneihi, B., Saha, P., Kalia, P., Jaiswal, S., Kundu, A., Saha, N. D., Sirowa, S. S., & Singh, N. (2020). Chemometric approach-based characterization and selection of mid-early cauliflower for bioactive compounds and antioxidant activity. Journal of Food Science and Technology, 57(1), 293–300. https://doi.org/10.1007/s13197-019-04060-6
Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644–7651. https://doi.org/10.1021/jf300459b
Yang, W., Cui, K., Li, X., Zhao, J., Zeng, Z., Song, R., Qi, X., & Xu, W. (2021). Effect of polyphenols on cognitive function: Evidence from population-based studies and clinical trials. The Journal of Nutrition, Health and Aging, 25(10), 1190–1204. https://doi.org/10.1007/s12603-021-1685-4
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.