Agricultural Utilization of Biochar: A Review of Production Technologies

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i3.802-813.7357

Keywords:

Biomass, Biochar, Technologies, Pyrolysis, Utilization, Soil properties

Abstract

Biochar production has gained significant attention lately due to its potential to sequester carbon,                improve soil fertility and mitigate climate change. Various production technologies have been developed to convert biomass into biochar, each with its unique characteristics and advantages. This review provides a comprehensive overview of the current biochar production technologies aiming to synthesize existing knowledge and identify research gaps with a focus on their potential to contribute to the United Nations Sustainable Development Goals (SDGs) 2, 12, 13 and 15. The scope of this review encompasses various biochar production techniques including slow pyrolysis, fast pyrolysis, gasification and torrefaction. The effects of production conditions such as temperature, residence time, and feedstock types on biochar properties and yields are discussed. The prospects of using biochar in the agricultural system were discussed.  Additionally, challenges and opportunities associated to scaling up biochar production technologies are highlighted. The findings of this review have implications for the development of sustainable biochar production practices and environmental management strategies.

References

Abhishek, K., Srivastava, A., Vimal, V., Gupta, A.K., Bhujbal, S.K., Biswas, J.K., Singh, L., Ghosh, P., Pandey, A., Sharma, P., and Kumar, M. (2022). Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of The Total Environment, 158562.

Abukari, A. (2014). Effect of rice husk biochar on maize productivity in the guinea savannah zone of Ghana. Department of Agroforestry, Kwame Nkrumah University of Science and Technology.

Abukari, A. (2019). Influence of rice husk biochar on water holding capacity of soil in the Savannah Ecological Zone of Ghana. Turkish Journal of Agriculture-Food Science and Technology, 7(6): 888-891.

Abukari, A. and Cobbinah, P. (2024). Can biochar made from rice husk affect Savanna soils pH, electrical conductivity and soil respiration? Turkish Journal of Agriculture-Food Science and Technology, 12(6): 978-983

Abukari, A., Abunyewa, A. A., and Issifu, H. (2018). Effect of rice husk biochar on nitrogen uptake and grain yield of maize in the Guinea Savanna zone of Ghana. UDS International Journal of Development, 5(2): 1-6.

Abukari, A., Abunyewa, A. A., and Yeboah, E. (2020). Influence of integrated soil fertility management on the vegetative growth parameters of Zea mays in the guinea savanna eco-zone of Ghana. Journal of Agricultural Sciences Belgrade, 65(2): 187-197.

Abukari, A., and Duwiejuah, A.B. (2019). A review of biochar influences on crop outputs and soil assets. Agriculture and Forestry Journal, 3(2): 74-80.

Abukari, A., Kaba, J. S., Dawoe, E., and Abunyewa, A. A. (2022). A comprehensive review of the effects of biochar on soil physicochemical properties and crop productivity. Waste Disposal and Sustainable Energy, 4(4): 343-359.

Afailal, Z., Gil-Lalaguna, N., Fonts, I., Gonzalo, A., Arauzo, J., and Sánchez, J.L. (2023). Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification. Fuel, 332: 125970.

Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M.G., Beyene, S., and Sileshi, G.W. (2021). Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agriculturae Scandinavica, Section B—Soil and Plant Science, 71(9): 852-869.

Ahmad Bhat, S., Kuriqi, A., Dar, M.U.D., Bhat, O., Sammen, S.S., Towfiqul Islam, A.R.M., Elbeltagi, A., Shah, O., AI-Ansari, N., Ali, R., and Heddam, S. (2022). Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review. Sustainability, 14(17): 11104.

Aishwarya, S., Sruthi, G., Aditya, M. N., Sivagami, K., and Chakraborty, S. (2022). Biomass Energy Conversion Using Thermochemical and Biochemical Technologies. Sustainable and Clean Energy Production Technologies, 93-131.

Alkharabsheh, H.M., Seleiman, M.F., Battaglia, M.L., Shami, A., Jalal, R.S., Alhammad, B.A., Almutairi, K.F., and Al-Saif, A.M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5): 993.

Almendro-Candel, M.B., Lucas, I.G., Navarro-Pedreño, J., and Zorpas, A.A. (2018). Physical properties of soils affected by the use of agricultural waste. Agricultural waste and residues, 2(1): 9-27.

Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., and Olazar, M. (2015). Kinetic study of carbon dioxide gasification of rice husk fast pyrolysis char. Energ. Fuel 29(5): 3198-3207.

Anand, A., Kumar, V., and Kaushal, P. (2022). Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, 156: 111959.

Anwari, G., Mandozai, A., and Feng, J. (2020). Effects of biochar amendment on soil problems and improving rice production under salinity conditions. Advanced journal of graduate research, 7(1): 45-63.

Bai, L., Karnowo, Kudo, S., Norinaga, K., Wang, Y.G., and Hayashi, J.I., (2014). Kinetics and mechanism of steam gasification of char from hydrothermally treated woody biomass. Energy and Fuel, 28(11): 7133-7139.

Bedassa, M. (2020). Soil acid Management using Biochar. International Journal of Agricultural Science and Food Technology, 6(2): 211-217.

Benedetti, V., Patuzzi, F., and Baratieri, M. (2018). Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energ. 227: 92-99.

Blanco‐Canqui, H. (2021). Does biochar improve all soil ecosystem services?. GCB Bioenergy, 13(2): 291-304.

Bolan, N., Hoang, S.A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K.H., Kirkham, M.B., and Kua, H.W. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2):150-200.

Brachi, P., Chirone, R., Miccio, M., and Ruoppolo, G. (2019). Fluidized bed torrefaction of biomass pellets: A comparison between oxidative and inert atmosphere. Powder Technol.

Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38: 68-94.

Brown, R.C. (2021). The role of pyrolysis and gasification in a carbon negative economy. Processes, 9(5): 882.

Cardona, S., Gallego, L.J., Valencia, V., Martínez, E., and Rios, L.A. (2019). Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustain. Energy Techn. 31: 17-24.

Châ, H.Y., Haruna, A.O., Majid, N.M.N.A. and Jalloh, M.B. (2019). Improving soil phosphorus availability and yield of Zea mays L. using biochar and compost derived from agro-industrial wastes. Italian Journal of Agronomy, 14(1): 34-42.

Chakhtouna, H., Benzeid, H., Zari, N., and Bouhfid, R. (2022). Recent advances in eco-friendly composites derived from lignocellulosic biomass for wastewater treatment. Biomass Conversion and Biorefinery, 1-27.

Chen, W.H., Wang, C.W., Ong, H.C., Show, P.L. and Hsieh, T.H. (2019). Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel, 258: 116168.

Chetri, J.K. and Reddy, K.R. (2021). Advancements in municipal solid waste landfill cover system: A review. Journal of the Indian Institute of Science, 101(4): 557-588.

Choi, J.H., Kim, S.S., Ly, H.V., Kim, J., and Woo, H.C. (2017). Effects of water-washing Saccharina japonica on fast pyrolysis in a bubbling fluidized-bed reactor. Biomass and Bioenergy, 98: 112-123.

Cordovil, C.M.D.S., Marinheiro, J., Serra, J., Cruz, S., Palmer, E., Hicks, K. and Erisman, J.W. (2021). Nitrogen Footprints and the Role of Soil Enzymes. In Enzymes for Solving Humankind's Problems (pp. 133-154). Springer, Cham.

Das, S.K. and Ghosh, G.K. (2020). Soil health management through low-cost biochar technology. In Biochar applications in agriculture and environment management (pp. 193-206). Springer, Cham.

Das, S.K. and Ghosh, G.K. (2021). Development and evaluation of biochar-based secondary and micronutrient enriched slow release nano-fertilizer for reduced nutrient losses. Biomass Conversion and Biorefinery, 1-12.

de Jesus Duarte, S., Glaser, B. and Pellegrino Cerri, C.E. (2019). Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy, 9(4): 165.

Delgado, R., Rosas, J.G., Gómez, N., Martínez, O., Sanchez, M.E., and Cara, J. (2013). Energy valorisation of crude glycerol and corn straw by means of slow co-pyrolysis: Production and characterisation of gas, char and bio-oil. Fuel, 112: 31-37.

Dhanavath, K.N., Bankupalli, S., Sugali, C.S., Perupogu, V., Nandury, S.V., Bhargava, S., and Parthasarathy, R. (2019). Optimization of process parameters for slow pyrolysis of neem press seed cake for liquid and char production. Journal of Environmental Chemical. Engineering, 7(1): 102905.

Diatta, A.A., Fike, J.H., Battaglia, M.L., Galbraith, J.M. and Baig, M.B. (2020). Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 13(14): 1-17.

Ezz, H., Ibrahim, M. G., Fujii, M., and Nasr, M. (2021). Dual biogas and biochar production from rice straw biomass: A techno-economic and sustainable development approach. Biomass Conversion and Biorefinery, 1-15.

Funke, A., Demus, T., Willms, T., Schenke, L., Echterhof, T., Niebel, A., Pfeifer, H., Dahmen, N. (2018). Application of fast pyrolysis char in an electric arc furnace. Fuel Process. Technol. 174: 61-68.

Garbuz, S., Mackay, A., Camps-Arbestain, M., DeVantier, B. and Minor, M. (2022). Biochar increases soil enzyme activities in two contrasting pastoral soils under different grazing management. Crop and Pasture Science.

Ghysels, S., Léon, A.E.E., Pala, M., Schoder, K.A., Acker, J.V., Ronsse, F. (2019). Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chem. Eng. J. 373: 446-457.

Gujre, N., Soni, A., Rangan, L., Tsang, D.C. and Mitra, S. (2021). Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution, 268: 115549.

Gupta, S., Sireesha, S., Sreedhar, I., Patel, C.M. and Anitha, K.L. (2020). Latest trends in heavy metal removal from wastewater by biochar based sorbents. Journal of Water Process Engineering, 38: 101561.

Halim, S.A., and Swithenbank, J. (2016). Characterisation of Malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology. Journal of Analytical and Applied Pyrolysis, 122: 64-75.

Hallett, P.D., Marin, M., Bending, G.D., George, T.S., Collins, C.D. and Otten, W. (2022). Building soil sustainability from root–soil interface traits. Trends in Plant Science

Han, Z., Lin, H., Xu, P., Li, Z., Wang, J., and Zou, J. (2022). Impact of organic fertilizer substitution and biochar amendment on net greenhouse gas budget in a tea plantation. Agriculture, Ecosystems and Environment, 326: 107779.

Haq, I., Singh, A. and Kalamdhad, A.S. (2021). Application of Biochar for Sustainable Development in Agriculture and Environmental Remediation. In Emerging Treatment Technologies for Waste Management. Springer, Singapore 133-153.

Heikkinen, J., Keskinen, R., Soinne, H., Hyväluoma, J., Nikama, J., Wikberg, H., Källi, A., Siipola, V., Melkior, T., Dupont, C., Campargue, M., Larsson, S.H., Hannula, M., and Rasa, K. (2019). Possibilities to improve soil aggregate stability using biochars derived from various biomasses through slow pyrolysis, hydrothermal carbonization, or torrefaction. Geoderma, 344: 40-49.

Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N., Kirkham, M.B., Chowdhury, S., and Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4): 379-420.

Huang, Z., He, F., Feng, Y., Zhao, K., Zheng, A., Chang, S., Wei, G., Zhao, and Z., Li, H. (2013). Biomass char direct chemical looping gasification using NiO-modified iron ore as an oxygen carrier. Energy and Fuel, 28(1): 183-191.

Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A.M., Solaiman, Z.M., Alghamdi, S.S., Ammara, U., Ok, Y.S., and Siddique, K.H. (2017). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17(3): 685-716.

Hwang, H., Oh, S., Choi, I.G., and Choi, J.W. (2015). Catalytic effects of magnesium on the characteristics of fast pyrolysis products – Bio-oil, bio-char, and non-condensed pyrolytic gas fractions. J. Anal. Appl. Pyrol. 113: 27-34.

International Biochar Initiative (2014). IBI biochar standards, version 2.0: Product definition and testing guidlines. International Biochar Initiative. Retrieved from (link unavailable)

Isemin, R., Mikhalev, A., Milovanov, O., Klimov, D., Kokh-Tatarenko, V., Brulé, M., Tabet, F., Nebyvaev, A., Kuzmin, S., and Konyakhin, V. (2022). Comparison of Characteristics of Poultry Litter Pellets Obtained by the Processes of Dry and Wet Torrefaction. Energies, 15(6): 2153.

Ji, M., Wang, X., Usman, M., Liu, F., Dan, Y., Zhou, L., Campanaro, S., Luo, G., and Sang, W. (2022). Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution, 294: 118655

Jia, Y., Hu, Z., Ba, Y., and Qi, W. (2021). Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chemical and Biological Technologies in Agriculture, 8(1): 1-11.

Kai, X., Meng, Y., Yang, T., Li, B., and Xing, W. (2019). Effect of torrefaction on rice straw physicochemical characteristics and particulate matter emission behavior during combustion. Bioresour. Technol. 278: 1-8.

Kajita, M., Kimura, T., Norinaga, K., Li, C.Z., and Hayashi, J.I. (2010). Catalytic and Noncatalytic Mechanisms in Steam Gasification of Char from the Pyrolysis of Biomass. Energy and Fuel, 24(1): 108-116.

Kanwal, S., Chaudhry, N., Munir, S., and Sana, H. (2019). Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Management, 88: 280-290.

Kapoor, L., Mohammad, A., Jha, J. M., Srivastava, N., Jana, S. K., Alshahrani, M. Y., and Gupta, V. K. (2022). Biofuel production using fast pyrolysis of various plant waste biomasses in fixed bed and twin‐screw reactors. International Journal of Energy Research.

Kavitha, B., Reddy, P.V.L., Kim, B., Lee, S.S., Pandey, S.K., and Kim, K.H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of environmental management, 227: 146-154.

Khan, N., Chowdhary, P., Gnansounou, E., and Chaturvedi, P. (2021). Biochar and environmental sustainability: emerging trends and techno-economic perspectives. Bioresource technology, 332: 125102.

Khan, Z., Xianting, F., Khan, M. N., Khan, M. A., Zhang, K., Fu, Y., and Shen, H. (2022). The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. Chemosphere, 136466.

Kumar, A., Saini, K., and Bhaskar, T. (2020). Hydochar and biochar: production, physicochemical properties and techno-economic analysis. Bioresource technology, 310:123442.

Kumar, A., Singh, E., Mishra, R., and Kumar, S. (2022). Biochar as environmental armour and its diverse role towards protecting soil, water and air. Science of The Total Environment, 806: 150444.

Kuzyakov, Y., Horwath, W.R., Dorodnikov, M., and Blagodatskaya, E. (2019). Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 128: 66-78.

Lam, S.S., Tsang, Y.F., Yek, P.N.Y., Liew, R.K., Osman, M.S., Peng, W., Lee, W.H., and Park, Y.K. (2019). Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties. Process Saf. Environ. 128: 30-35.

Lehmann, J., and S. Joseph. 2009. Biochar systems. pp. 46–68 In J. Lehmann and S. Joseph (eds.), Biochar for Environmental Management: Science and Technology. Earthscan Publ., London.

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., and Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the total Environment, 763: 144204.

Liao, H., Zheng, C., Long, J., and Guzmán, I. (2021). Effects of biochar amendment on tomato rhizosphere bacterial communities and their utilization of plant-derived carbon in a calcareous soil. Geoderma, 396: 115082.

Lin, Y.L., Zheng, N.Y., and Hsu, C.H. (2021). Torrefaction of fruit peel waste to produce environmentally friendly biofuel. Journal of Cleaner Production, 284: 124676.

Lu, H., Gong, Y., Areeprasert, C., Ding, L., Guo, Q., Chen, W.H., and Yu, G. (2021). Integration of biomass torrefaction and gasification based on biomass classification: a review. Energy Technology, 9(5): 2001108.

Ma, Z., Zhang, Y., Shen, Y., Wang, J., Yang, Y., Zhang, W., and Wang, S. (2019). Oxygen migration characteristics during bamboo torrefaction process based on the properties of torrefied solid, gaseous, and liquid product. Biomass Bioenergy, 128: 105300.

Mahmoud, A.W.M., Esmail, S.E., El-Attar, A.B., Othman, E.Z., and El-Bahbohy, R.M. (2022). Prospective Practice for Compound Stress Tolerance in Thyme Plants Using Nanoparticles and Biochar for Photosynthesis and Biochemical Ingredient Stability. Agronomy, 12(5): 1069.

Maikol, N., Haruna, A.O., Maru, A., Asap, A., and Medin, S. (2021). Utilization of urea and chicken litter biochar to improve rice production. Scientific reports, 11(1): 1-20.

Medic, D., Darr, M., Shah, A., Potter, B., and Zimmerman, J. (2012). Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel, 91(1): 147-154.

Melo, L.C.A., Lehmann, J., Carneiro, J.S.D.S., and Camps-Arbestain, M. I. (2022). Biochar-based fertilizer effects on crop productivity: a meta-analysis. Plant and Soil, 1-14.

Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental science & technology, 45(22): 9473-9483

Millán, L.M.R., Vargas, F.E.S., and Nzihou, A. (2019). Catalytic effect of inorganic elements on steam gasification biochar properties from agrowastes. Energ. Fuel, 33(9): 8666-8675.

Mishra, S., Upadhyay, R.K. (2021). Review on biomass gasification: gasifiers, gasifying mediums, and operational parameters. Materials Science for Energy Technologies, 4: 329-340.

Mora, M., Fàbregas, E., Céspedes, F., Bartrolí, J., and Puy, N. (2022). Production and separation of value-added compounds from pine wood using pyrolysis and biorefinery techniques. Fuel Processing Technology, 238: 107509.

Morin, M., Pécate, S., Hémati, M., and Kara, Y. (2016). Pyrolysis of biomass in a batch fluidized bed reactor: Effect of the pyrolysis conditions and the nature of the biomass on the physicochemical properties and the reactivity of char. J. Anal. Appl. Pyrol. 122: 511-523.

Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., and Hicks, K.B. (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy, 34(1): 67-74.

Munawar, M.A., Khoja, A.H., Naqvi, S.R., Me hran, M.T., Hassan, M., Liaquat, R., and Dawood, U.F. (2021). Challenges and opportunities in biomass ash management and its utilization in novel applications. Renewable and Sustainable Energy Reviews, 150: 111451.

Muvhiiwa, R., Kuvarega, A., Llana, E.M., and Muleja, A. (2019). Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes. J. Environ. Chem. Eng. 7(5): 103391.

Ndoung, O.C.N., de Figueiredo, C.C., and Ramos, M.L.G. (2021). A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon, 7(12): e08473.

Neogi, S., Sharma, V., Khan, N., Chaurasia, D., Ahmad, A., Chauhan, S., Singh, A., You, S., Pandey, A., and Bhargava, P.C. (2021). Sustainable biochar: a facile strategy for soil and environmental restoration, energygeneration, mitigation of global climate change and circular bioeconomy. Chemosphere, 133474.

Nguyen, M.K., Lin, C., Hoang, H.G., Sanderson, P., Dang, B.T., Bui, X.T., Nguyen, N.S.H., Vo, D.V.N., and Tran, H.T. (2022). Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere, 134488.

Niu, Y., Lv, Y., Lei, Y., Liu, S., Liang, Y., and Wang, D. (2019). Biomass torrefaction: properties, applications, challenges, and economy. Renewable and Sustainable Energy Reviews, 115: 109395.

Norrrahim, M. N. F., Farid, M. A. A., Lawal, A. A., Yasim-Anuar, T. A. T., Samsudin, M. H., and Zulkifli, A. A. (2022). Emerging technologies for value-added use of oil palm biomass. Environmental Science Advances.

Nyambo, P., Taeni, T., Chiduza, C., and Araya, T. (2018). Effects of maize residue biochar amendments on soil properties and soil loss on acidic Hutton soil. Agronomy, 8(11): 256.

Osman, A.I., Mehta, N., Elgarahy, A.M., Al-Hinai, A., Al-Muhtaseb, A.A.H., and Rooney, D.W. (2021). Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 19(6): 4075-4118.

Pal, S., Kumar, A., Sharma, A. K., Ghodke, P. K., Pandey, S., and Patel, A. (2022). Recent Advances in Catalytic Pyrolysis of Municipal Plastic Waste for the Production of Hydrocarbon Fuels. Processes, 10(8): 1497.

Palansooriya, K.N., Ok, Y.S., Awad, Y.M., Lee, S.S., Sung, J.K., Koutsospyros, A., and Moon, D.H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of environmental management, 234: 52-64.

Papari, S., Bamdad, H., and Berruti, F. (2021). Pyrolytic conversion of plastic waste to value-added products and fuels: A review. Materials, 14(10): 2586.

Patuzzi, F., Prando, D., Vakalis, S., Rizzo, A.M., Chiaramonti, D., Tirler, W., Mimmo, T., Gasparella, A., and Baratieri, M. (2016). Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy). Energy, 112: 285-293.

Pelaez-Samaniego, M. R., Mood, S. H., Garcia-Nunez, J., Garcia-Perez, T., Yadama, V., and Garcia-Perez, M. (2022). Biomass carbonization technologies. Sustainable Biochar for Water and Wastewater Treatment, 39-92.

Peng, F., He, P., Luo, Y., Lu, X., Liang, Y., and Fu, J. (2012). Adsorption of phosphate by biomass char deriving from fast pyrolysis of biomass waste. Clean-Soil Air Water, 40(5): 493-498.

Phanphanich, M., and Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour. Technol. 102(2): 1246-1253.

Purakayastha, T.J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., and Tsang, D.C. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227: 345-365.

Qin, F., Zhang, C., Zeng, G., Huang, D., Tan, X., and Duan, A. (2022). Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews, 157: 112056.

Qing, M., Long, Y., Liu, L., Yi, Y., Li, W., He, R., and Xiang, J. (2022). Pyrolysis of the food waste collected from catering and households under different temperatures: Assessing the evolution of char structure and bio-oil composition. Journal of Analytical and Applied Pyrolysis, 164: 105543.

Qureshi, K.M., Lup, A.N.K., Khan, S., Abnisa, F., and Daud, W.M.A.W. (2018). A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. Journal of Analytical and Applied Pyrolysis, 131: 52-75.

Rashid, M., Hussain, Q., Khan, K. S., Alwabel, M. I., Hayat, R., Akmal, M., and Alvi, S. (2021). Carbon-based slow-release fertilizers for efficient nutrient management: synthesis, applications, and future research needs. Journal of Soil Science and Plant Nutrition, 21(2): 1144-1169.

Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., and Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19): 11061.

Ren, X., Ghazani, M. S., Zhu, H., Ao, W., Zhang, H., Moreside, E., and Bi, X. (2022). Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Applied Energy, 315: 118970.

Roberts, C., Greene, J., and Nemet, G. F. (2023). Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues. Technological Forecasting and Social Change, 195: 122704.

Ronsse, F., van Hecke, S., Dickinson, D., and Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2): 104-115.

Russo, A., Pollastri, S., Ruocco, M., Monti, M.M., and Loreto, F. (2022). Volatile organic compounds in the interaction between plants and beneficial microorganisms. Journal of Plant Interactions, 17(1): 840-852.

Saha, N., Fillerup, E., Thomas, B., Pilgrim, C., Causer, T., Herren, D., and Klinger, J. (2022). Improving bamboo’s fuel and storage properties with a net energy export through torrefaction paired with catalytic oxidation. Chemical Engineering Journal, 440: 135750.

Saleem, M. A., Iqbal, A., ul Ain, Q., Idrees, M., Hameed, M. U., Shehzad, A., and Iqbal, M. A. (2023). Biochar: A Natural Soil Remedy for Sustainable Agricultural Growth-A Critical Review. Jammu Kashmir Journal of Agriculture, 3(2), 193-206.

Setter, C., Silva, F. T. M., Assis, M. R., Ataíde, C. H., Trugilho, P. F., and Oliveira, T. J. P. (2020). Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel, 261: 116420.

Shakoor, A., Arif, M. S., Shahzad, S. M., Farooq, T. H., Ashraf, F., Altaf, M. M., and Ashraf, M. (2021). Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?-A global meta-analysis. Environmental Research, 202: 111789.

Shetty, R., and Prakash, N.B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1): 1-10.

Sohi, S. P., Krull, E., Lopez-Capel, E., and Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105: 47-82.

Sun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., and Song, J. (2017). Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy, 9(9): 1423-1435.

Szwaja, S., Poskart, A., and Zajemska, M. (2019). A new approach for evaluating biochar quality from Virginia Mallow biomass thermal processing. Journal of cleaner production, 214: 356-364.

Tahery, S., Munroe, P., Marjo, C.E., Rawal, A., Horvat, J., Mohammed, M., Webber, J.B.W., Arns, J.Y., Arns, C.H., Pan, G., and Bian, R. (2022). A comparison between the characteristics of a biochar-NPK granule and a commercial NPK granule for application in the soil. Science of The Total Environment, 832: 155021.

Tan, Y., Wan, X., Ni, X., Wang, L., Zhou, T., Sun, H., Wang, N., and Yin, X. (2022). Efficient removal of Cd (II) from aqueous solution by chitosan modified kiwi branch biochar. Chemosphere, 289: 133251.

Thengane, S.K., Kung, K.S., Gomez-Barea, A., and Ghoniem, A.F. (2022). Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Progress in Energy and Combustion Science, 93: 101040.

Thomson, R., Kwong, P., Ahmad, E., and Nigam, K.D.P. (2020). Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy, 45(41): 21087-21111.

Toledano, A., Serrano, L., Pineda, A., Romero, A. A., Luque, R., and Labidi, J. (2014). Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Applied Catalysis B: Environmental, 145: 43-55.

Tsai, C.C., and Chang, Y.F. (2020). Nitrogen availability in biochar-amended soils with excessive compost application. Agronomy, 10(3): 444.

Vaghela, D. R., and Kapupara, P. J. (2024). Materials Based on Biochar for Energy Storage. In Materials for Boosting Energy Storage. Volume 2: Advances in Sustainable Energy Technologies (pp. 239-264). American Chemical Society.

Vigneshwar, S.S., Swetha, A., Gopinath, K. P., Goutham, R., Pal, R., Arun, J., and Pugazhendhi, A. (2022). Bioprocessing of biowaste derived from food supply chain side-streams for extraction of value added bioproducts through biorefinery approach. Food and Chemical Toxicology, 113184.

Walters, R.D., and White, J.G. (2018). Biochar in situ decreased bulk density and improved soil-water relations and indicators in Southeastern US Coastal plain ultisols. Soil Science, 183(3): 99-111.

Wan, J., Liu, L., Ayub, K. S., Zhang, W., Shen, G., Hu, S., and Qian, X. (2020). Characterization and adsorption performance of biochars derived from three key biomass constituents. Fuel, 269: 117142.

Wang, D., Jiang, P., Zhang, H., and Yuan, W. (2020). Biochar production and applications in agro and forestry systems: A review. Science of the Total Environment, 723: 137775.

Wang, D., Li, D., Liu, Y., Lv, D., Ye, Y., Zhu, S., and Zhang, B. (2014). Study of a new complex method for extraction of phenolic compounds from bio-oils. Sep. Purif. Technol. 134: 132-138.

Wang, L., Barta-Rajnai, E., Skreiberg, Ø., Khalil, R., Czégény, Z., Jakab, E., Barta, Z., and Grønli, M. (2017). Impact of torrefaction on woody biomass properties. Energy Procedia, 105: 1149-1154.

Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature communications, 1(1): 56.

Wu, L., Liu, X., and Ma, X. (2021). How biochar, horizontal ridge, and grass affect runoff phosphorus fractions and possible tradeoffs under consecutive rainstorms in loessial sloping land?. Agricultural Water Management, 256: 107121.

Wu, S.R., Chang, C.C., Chang, Y.H., and Wan, H.P. (2016). Comparison of oil-tea shell and Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast pyrolysis system. Fuel, 175: 57-63.

Xiao, X., Chen, B., Chen, Z., Zhu, L., and Schnoor, J.L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environmental science and technology, 52(9): 5027-5047.

Xin, S., Mi, T., Liu, X., and Huang, F. (2018). Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues. Energy, 152: 586-593.

Xiong, Q., Hu, J., Wei, H., Zhang, H., and Zhu, J. (2021). Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture, 11(3): 234.

Xu, M., Gao, P., Yang, Z., Su, L., Wu, J., Yang, G., Zhang, X., Ma, J., Peng, H., and Xiao, Y. (2019). Biochar impacts on phosphorus cycling in rice ecosystem. Chemosphere, 225: 311-319.

Xu, M.X., Wu, Y.C., Nan, D.H., Lu, Q., and Yang, Y.P. (2019). Effects of gaseous agents on the evolution of char physical and chemical structures during biomass gasification. Bioresour. Technol. 292: 121994.

Yan, Q., Dong, F., Li, J., Duan, Z., Yang, F., Li, X., Lu, J., and Li, F. (2019). Effects of maize straw‐derived biochar application on soil temperature, water conditions and growth of winter wheat. European Journal of Soil Science, 70(6): 1280-1289.

Yang, L., Wu, Y., Wang, Y., An, W., Jin, J., Sun, K., and Wang, X. (2021). Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of the Total Environment, 758: 143657.

Yang, Z., Kumar, A., Huhnke, R.L., Buser, M., and Capareda, S. (2016). Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products. Fuel, 166: 157-165.

Yin, R., Liu, R., Mei, Y., Fei, W., and Sun, X. (2013). Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel, 112: 96-104.

Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., and Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of environmental management, 232: 8-21.

Yu, S., Park, J., Kim, M., Ryu, C., and Park, J. (2019). Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresour. Technol. Reports, 6: 217-222.

Yuan, Z., Song, Y., Li, D., Huang, B., Chen, Y., Ge, X., and Xie, Z. (2022). Effects of biochar application on the loss characteristics of Cd from acidic soil under simulated rainfall conditions. Environmental Science and Pollution Research, 1-12.

Yue, Y., Lin, Q., Xu, Y., Li, G., and Zhao, X. (2017). Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. Journal of Analytical and Applied Pyrolysis, 124: 355-361.

Zahedifar, M., and Moosavi, A.A. (2020). Assessing cadmium availability of contaminated saline-sodic soils as influenced by biochar using the adsorption isotherm models. Archives of Agronomy and Soil Science, 66(12): 1735-1752.

Zhang, C., Ho, S.H., Chen, W.H., Xie, Y., Liu, Z., and Chang, J.S. (2018). Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energ, 220: 598-604.

Zhang, L., Yao, Z., Zhao, L., Li, Z., Yi, W., Kang, K., and Jia, J. (2021). Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar. Energy, 232: 120927.

Zhou, M., Ying, S., Chen, J., Jiang, P., and Teng, Y. (2021). Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environmental Science and Pollution Research, 28(46): 65188-65199.

Downloads

Published

14.03.2025

How to Cite

Abukari, A., Kaba, J. S., & Abunyewa, A. A. (2025). Agricultural Utilization of Biochar: A Review of Production Technologies. Turkish Journal of Agriculture - Food Science and Technology, 13(3), 802–813. https://doi.org/10.24925/turjaf.v13i3.802-813.7357

Issue

Section

Review Articles