The Effect of Different Lime Forms on Cadmium Uptake of Durum Wheat Varieties
DOI:
https://doi.org/10.24925/turjaf.v11i8.1365-1371.6192Anahtar Kelimeler:
Makarnalık buğday- Kadmiyum- KireçlemeÖzet
Cadmium (Cd) accumulation in durum wheat (Triticum durum L.) and its human transport with food chain is a major environmental issue worldwide. The research was based on a pot experiment conducted on fifteen durum wheat cultivars, grown on acid soil pH 5.2. The effect of application of two different lime form (lime1=CaO; Calcium oxide and lime2=CaCO3; limestone) and on shoot dry weight and shoot concentrations of cadmium (Cd). Durum wheat cultivars were grown in strongly acid soil pH 5.2 treated with control (lime0), lime1 (CaO3 g kg-1 soil), lime2 (5.36 g CaCO3) and Cd (5 and 10 mg kg-1 soil) and harvested after 62 days of growth under greenhouse conditions. Durum wheat cultivars without lime fertilization caused decrease in shoot growth, in all durum wheat cultivars and at high Cd treatment. On the other hand, application of lime to the soil resulted in an increase in dry matter yield at both Cd5 and Cd10 doses. While average shoot dry matter yield of lime0 conditions of cadmium 10 dose was 47 mg plant-1, this yield increased to 120 mg plant-1 in lime1 application and to 111 mg plant-1 in lime2 application. Shoot Cd concentrations of durum wheat varieties caused a statistically significant decrease with lime1 and lime2 applications, whereas lime0 and lime2 applications of Cd5 dose caused 46% and 30% decrease in average Cd concentrations, respectively. The results indicated that all durum wheat cultivars were more susceptible to both without lime and Cd toxicity as compared to lime treatment. Cadmium toxicity in the shoot was relieved by lime1 and lime2 treatment. The results indicate that lime protects plants from Cd toxicity in durum wheat cultivars.
Referanslar
Andresen E, Hendrik K. 2013. "Cadmium toxicity in plants." Cadmium: From toxicity to essentiality. Springer Netherlands, p: 395-413.
Bataglia OC, Furlani AMC, Teixeira JPF, Furlani, PR, Gallo JR. 1983. Methods of chemical analysis of plants. Boletim Tecnico-Instituto Agronomico (Brazil). no. 78.
Bian R, Li L, Bao D, Zheng J, Zhang X, Zheng J, Liu X, Cheng K, Pan G. 2016. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environmental Science and Pollution Research, 23(10): 10028-10036. Doi: 10.1007/s11356-016-6214-3
Bolan NS, Adriano DC, Curtin D. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in agronomy, 78(21), 5-272
Bolan NS, Makino T, Kunhikrishnan A, Kim PJ, Ishikawa S, Murakami M, Naidu R, Kirkham MB. 2013. Cadmium contamination and its risk management in rice ecosystems. Advances in Agronomy, 119: 183-273. Doi:10.1016/B978-0-12-407247-3.00004-4
Borchers A, Teuber SS, Keen CL, Gershwin ME. 2010. Food safety. Clinical reviews in Allergy & Immunology, 39(2): 95-141.
Brady NC, Weil RR. 2002. Nature and Properties of Soil. New Delhi: Pearson Education
Cakmak I, Marschner H. 1988. Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant Physiology, 132(3): 356-361. Doi: 10.1016/S0176-1617(88)80120-2
Cakmak I, Welch RM, Erenoglu B, Römheld V, Norvell WA, Kochian LV. 2000. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant and Soil, 219(1-2): 279-284.
Castaldi P, Santona L, Cozza C, Giuliano V, Abbruzzese C, Nastro V, Melis P. 2005. Thermal and spectroscopic studies of zeolites exchanged with metal cations. Journal of Molecular Structure, 734(1-3): 99-105.
Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage atrategy. Plant Cell Physiol, 45(11): 1681–1693. Doi:10.1093/pcp/pch192
Chen H, Zhang W, Yang X, Wang P, McGrath SP, Zhao FJ. 2018. Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 207: 699-707. Doi:10.1016/j.chemosphere.2018.05.143
Clarke JM, Norvell WA, Clarke FR, Buckley WT. 2002. Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Canadian Journal of Plant Science, 82(1): 27-33. Doi: 10.4141/P01-083
Clemens S, Aarts MG, Thomine S, Verbruggen N. 2013. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2): 92-99. Doi: 10.1016/j.tplants.2012.08.003
Dakora FD, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Food Security in Nutrient-stressed Environments: Exploiting plants’ genetic capabilities,pp. 201-213.
Derome J, Saarsalmi A. 1999. The effect of liming and correction fertilisation on heavy metal and macronutrient concentrations in soil solution in heavy-metal polluted scots pine stands. Environmental Pollution, 104(2): 249-259.
Dunbar KR, McLaughlin MJ, Reid RJ. 2003. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). Journal of Experimental Botany, 54(381): 349-354. Doi: /10.1093/jxb/erg016
Erdem H, Tosun YK, Ozturk M. 2012. Effect of cadmium-zinc interactions on growth and Cd-Zn concentration in durum and bread wheats. Fresenius Environ Bull, 21(5): 1046-51.
Evanko CR, Dzombak DA. 1997. Remediation of metals-contaminated soils and groundwater. Pittsburgh, PA: Ground-water remediation technologies analysis center
Evans LJ, Spiers GA, Zhao G. 1995. Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils. International Journal of Environmental Analytical Chemistry, 59(2-4): 291-302. Doi:10.1080/03067319508041335
Friberg, L. (2018). Cadmium in the Environment. CRC press
Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH. 2006. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environmental Pollution, 144(1): 40-50. Doi: 10.1016/j.envpol.2006.01.012
Goulding KW, Blake L. 1998. Land use, liming and the mobilization of potentially toxic metals. Agriculture, Ecosystems & Environment, 67(2-3): 135-144. Doi:10.1016/S0167-8809(97)00111-4
Hernandez LE, Ramos I, Carpena-Ruiz R, Lucena JJ, Garate A. 1996. Effect of cadmium on the distribution ofmicronutrients in Lactuca spp., maize and pea plants. In: Fertilizers and Environment, ed, C. Rodriguez-Barrueco, Kluwer Academic Publishers, pp. 503-508.
Hinsinger P, Plassard C, Tang C, Jaillard B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248(1): 43-59.
Koleli N, Çakmak Ö, İşler F, Çakmak I. 1998. The effects of zinc nutrition on cadmium toxicity in different cereal species. I. In National Zinc Congress (Agriculture, Food and Health), pp. 491-500, Doi: 10.1080/0365034021000071837
Koleli N, Eker S, Cakmak I. 2004. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environmental Pollut, 131: 453–459. Doi: 10.1016/j.envpol.2004.02.012
Korkmaz, K., Kara, S. M., Ozkutlu, F., & Gul, V. (2010). Monitoring of heavy metals and selected micronutrients in hempseeds from North-western Türkiye. African Journal of Agricultural Research, 5(6), 463-467.
Korkmaz K, Kara SM, Özkutlu F, Akgün M, Coşge Şenkal B. 2017. Profile of heavy metal and nutrient elements in some sideritis species. Indian Journal of Pharmaceutical Education and Research 51:209–212.
Korkmaz, K., Ertürk, Ö., Ayvaz, M. Ç., Özcan, M. M., Akgün, M., Kirli, A., & Alver, D. O. (2018). Effect of cadmium application on antimicrobial, antioxidant and total phenolic content of basil genotypes. Indian Journal of Pharmaceutical Education and Research, 52(4), S108-S114.
Kumarpandit T, Kumarnaik S, Patra PK, Dey N, Patra PK, Das DK. 2017. Influence of organic manure and lime on cadmium mobility in soil and uptake by spinach (Spinacia oleracea L.). Communications in Soil Science and Plant Analysis, 48(4): 357-369. Doi:10.1080/00103624.2016.1261886
Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3): 421-428. Doi:10.2136/sssaj1978.03615995004200030009x
Mahabadi AA, Hajabbasi MA, Khademi H, Kazemian H. 2007. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3-4). 388-393. Doi:10.1016/j.geoderma.2006.08.032
Marschner P, Rengel Z. 2012. Nutrient availability in soils. In Marschner's mineral nutrition of higher plants, pp. 315-330. Academic Press. Doi:10.1016/B978-0-12-384905-2.00012-1
McLaughlin MJ, Parker DR, Clarke JM. 1998. Metals and micronutrients: food safety issues. Field Crops Research. 60, 143-163. Doi:10.1016/S0378-4290(98)00137-3
Mench MJ. 1998. Cadmium availability to plants in relation to major long-term changes in agronomy systems. Agriculture, ecosystems & environment, 67(2-3): 175-187. Doi:10.1016/S0167-8809(97)00117-5
Oladzad-Abbasabadi A, Kumar A, Pirseyedi S, Salsman E, Dobrydina M, Poudel RS, Wesam AA, Shiaoman C, Faris JD, Elias EM. 2018. Identification and validation of a new source of low grain cadmium accumulation in durum wheat. G3: Genes, Genomes, Genetics, 8(3): 923-932. Doi:10.1534/g3.117.300370
Öztürk L, Eker S, Özkutlu F, Çakmak İ. 2003. Effect of cadmium on growth and concentrations of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars. Turkish Journal of Agriculture and Forestry, 27(3): 161-168.
Richards LA. 1954. Diagnosis and improvement of saline and alkali Soils. United States Depatyment of Agriculture Handbook, 60.
Saltalı, K. (2015). Tarımda toprak kalitesi için gidya kullanımı. Türkiye doğal beslenme ve yaşam boyu sağlık zirvesi. Özet Kitap. 20-23 Mayıs, Bilecik, Türkiye.
Saltalı, K., Korkmaz, K. (2015). Gidya Organomineral Toprak Düzenleyicisi Olarak Değerlendirilebilir mi? Uluslararası Katılımlı Toprak Su Kaynakları Kongresi.1-4 Eylül, 2015. Kahramanmaraş.
Schlichting E, Blume HP. 1966. Bodenkundliches Praktikum; eine Einfuhrung in pedologisches Arbeiten fur Okologen, insbesondere Land-und Forstwirte, und fur Geowissenschaftler.
Shi L, Guo Z, Liang F, Xiao X, Peng C, Zeng P, Feng W, Ran H. 2019. Effect of liming with various water regimes on both immobilization of Cadmium and improvement of bacterial communities in Contaminated Paddy: A field experiment. International Journal of Environmental Research and Public Health, 16(3): 498. Doi:10.3390/ijerph16030498
Sinclair AH, Mackie-Dawson LA, Linehan DJ. 1990. Micronutrient inflow rates and mobilisation into soil solution in the root zone of winter wheat (Triticum aestivum L.). Plant and Soil, 122(1): 143-146.
Stacey SP, McLaughlin MJ, Hettiarachchi GM. 2010. Fertilizer-borne trace element contaminants in soils. Trace elements in soils, pp.135-154. Doi:10.1002/9781444319477
Tisdale SL, Havlin A, Nelson WL, Beton JD. 2005. Soil Fertility and Fertilizers. New Delhi: Pearson Education, Inc.
Trakal L, Komárek M, Száková J, Zemanová V, Tlustoš P. 2011. Biochar application to metal-contaminated soil: evaluating of Cd, Cu, Pb and Zn sorption behavior using single-and multi-element sorption experiment. Plant, Soil and Environment, 57(8:, 372-380. Doi: 10.17221/155/2011-PSE
Truong PN, Foong YK, Guthrie M, Hung YT. 2010. Phytoremediation of heavy metal contaminated soils and water using vetiver grass. In Environmental Bioengineering, pp: 233-275. Humana Press, Totowa, NJ.
Vasiliadou S, Dordas C. 2009. Increased concentration of soil cadmium affects on plant growth, dry matter accumulation, Cd, and Zn uptake of different tobacco cultivars (Nicotiana tabacum L.). International Journal of Phytoremediation, 11(2): 115-130. Doi: 10.1080/15226510802378400
Wolnik KA, Fricke FL, Capar SG, Braude GL, Meyer MW, Satzger RD, Bonnin E. 1983. Elements in major raw agricultural crops in the United States. 1. Cadmium and lead in lettuce, peanuts, potatoes, soybeans, sweet corn, and wheat. J. Agric. Food Chem. 31: 1240–1244. doi:10.1021/jf00120a024
Yu HY, Liu C, Zhu J, Li F, Deng DM, Wang Q, Liu C. 2016. Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environmental Pollution 209:38-45. Doi:10.1016/j.envpol.2015.11.021
Zhao FJ, Huang XY. 2018. Cadmium phytoremediation: call rice CAL1. Molecular Plant, 11(5): 640-642.
Zhu H, Chen C, Xu C, Zhu Q, Huang D. 2016. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 219: 99-106. Doi:10.1016/j.envpol.2016.10.043
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.