Revealing the Antioxidant, Phenolic and Beta-Carotene Richness of Sweet Potato (Ipomoea batatas L) Leaves
DOI:
https://doi.org/10.24925/turjaf.v12i8.1261-1268.6631Anahtar Kelimeler:
sweet potato- phenolic- antioxidant- β-CaroteneÖzet
The diverse nutrients found in sweet potato leaves, including vitamins, minerals, and antioxidants, offer a range of health benefits. The presence of carotenoids and polyphenols, both powerful health-promoting compounds, highlights their potential contribution to medical science. The main objective of this study was to ascertain essential functionals substances of antioxidant, phenolic compounds, and β-carotene in the leaves of 14 distinct sweet potato lines cultivated in open field. A comprehensive analysis of antioxidant capacity, phenolic content, and β-carotene was conducted using ABTS, Folin-Ciocalteu, and HPLC techniques, respectively. The study showed that the concentrations of total antioxidants, phenols, and β-carotene differed markedly among the leaf materials. Among the lines, SP-13 stands out with the highest concentration of phenols (124.64 mg/g dry weight), while SP-14 comes in at the opposite end with the lowest amount (62.97 mg/g dry weight) under field conditions. In the case of antioxidant content in line SP-3 showed the highest with 3.55 mg/g dry weight, while SP-14 brings up the lowest with 1.88 mg/g dry weight. Line SP-5 showed the most β-carotene (0.51 mg/g dry weight), while SP-11 had the least (0.05 mg/g dry weight). Therefore, it can be concluded that sweet potato leaves are a valuable dietary source of antioxidants, phenolic compounds, and β-carotene which have beneficial health elements.
Referanslar
Abong, G. O., Muzhingi, T., Okoth, M. W., Ng'ang'a, F., Ochieng, P. E., Mbogo, D. M., & Ghimire, S. (2021). Processing methods affect phytochemical contents in products prepared from orange‐fleshed sweet potato leaves and roots. Food Science & Nutrition, 9(2), 1070-1078. https://doi.org/10.1002/fsn3.2081
Abong, G. O., Muzhingi, T., Wandayi, O. M., Ng’ang’a, F., Ochieng, P. E., Mahuga Mbogo, D., & Ghimire, S. (2020). Phytochemicals in leaves and roots of selected Kenyan orange fleshed sweet potato (OFSP) varieties. International Journal of Food Science, 51 (1), 102-112. https://doi.org/10.1155/2020/3567972
Alam, M. K., Sams, S., Rana, Z. H., Akhtaruzzaman, M., & Islam, S. (2020). Minerals, vitamin C, and effect of thermal processing on carotenoid composition in nine varieties of orange-fleshed sweet potato (Ipomoea batatas L.). Journal of Food Composition and Analysis, 92, 103582. https://doi.org/10.1016/j.jfca.2020.103582
Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Van, C. J. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated, and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. https://doi.org/10.1016/j.foodchem.2007.11.056
Cho, H. D., Rabbani, M. B., Islam, S., & Lee, S. O. (2020). Comparison of Total Phenolic Contents, Antioxidant and Anti-Inflammation Activity in Sweetpotato Leaves Obtained from 24 Different Cultivars. Current Developments in Nutrition, 4, 4140380. https://doi.org/10.1093/cdn/nzaa045_013
de Albuquerque, T. M. R., Sampaio, K. B., & de Souza, E. L. (2019). Sweet potato roots: Unrevealing an old food as a source of health-promoting bioactive compounds–A review. Trends in Food Science & Technology, 85, 277-286. https://doi.org/10.1016/j.tifs.2018.11.006Get rights and content
Deepo, D. M., Ahn, Y. J., Eom, H. J., Hahn, D. Y., Kim, H. Y., Choi, E. K., Hwang, U. S., & Lim, K. B. (2023). Comparison of the functional components in netted and cantaloupe melons. Journal of Agriculture & Life Science, 57(3), 1-7. https://doi.org/10.14397/jals.2023.57.3.1
Hong, J., Mu, T., Sun, H., Richel, A., & Blecker, C. (2020). Valorization of the green waste parts from sweet potato (Ipomoea batatas L.): Nutritional, phytochemical composition, and bioactivity evaluation. Food Science & Nutrition, 8(8), 4086-4097. https://doi.org/10.1002/fsn3.1675
Huang, X., Tu, Z., Xiao, H., Li, Z., Zhang, Q., Wang, H., & Zhang, L. (2013). Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food and Bioproducts Processing, 91(1), 1-6. https://doi.org/10.1016/j.fbp.2012.07.006
Im, Y. R., Kim, I., & Lee, J. (2021). Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea Batatas L.): Varietal comparisons and physical distribution. Antioxidants, 10(3), 462. https://doi.org/10.3390/antiox10030462
Ishida, H., Suzuno, H., Sugiyama, N., Innami, S., Tadokoro, T., & Maekawa, A. (2000). Nutritive evaluation on chemical components of leaves, stalks, and stems of sweet potatoes (Ipomoea batatas L.). Food Chemistry, 68(3), 359-367. https://doi.org/10.1016/S0308-8146(99)00206-X
Islam, S. (2006). Sweetpotato (Ipomoea batatas L.) leaf: its potential effect on human health and nutrition. Journal of Food Science, 71(2), R13-R121. https://doi.org/10.1111/j.1365-2621.2006.tb08912.x
Islam, S. (2014). Nutritional and medicinal qualities of sweet potato tops and leaves. Cooperative Extension Program, University of Arkansas at Pine Bluff.
Islam, S., Adam, Z., Rahaman, M. A., & Hapke, K. (2021). Growing sweet potato (Ipomoea batatas L.) leaves as a dietary and health beneficial vegetable greens. Journal of Agricultural, Environmental and Consumer Sciences, 21, 86-97.
Islam, S., Yoshimoto, M., Ishiguro, K., Okuno, S., & Yamakawa, O. (2003). Effect of artificial shading and temperature on radical scavenging activity and polyphenolic composition in sweetpotato (Ipomoea batatas L.) leaves. Journal of the American Society for Horticultural Science, 128(2), 182-187. https://doi.org/10.21273/JASHS.128.2.0182
Jang, Y., & Koh, E. (2019). Antioxidant content and activity in leaves and petioles of six sweet potato (Ipomoea batatas L.) and antioxidant properties of blanched leaves. Food science and biotechnology, 28, 337-345. https://doi.org/10.1007/s10068-018-0481-3
Jiang, P., Han, B., Jiang, L., Li, Y., Yu, Y., Xu, H., & Ye, X. (2019). Simultaneous separation and quantitation of three phytosterols from the sweet potato, and determination of their anti-breast cancer activity. Journal of Pharmaceutical and Biomedical Analysis, 174, 718-727. https://doi.org/10.1016/j.jpba.2019.06.048
Kandlakunta, B., Rajendran, A., & Thingnganing, L. (2008). Carotene content of some common (cereals, pulses, vegetables, spices, and condiments) and unconventional sources of plant origin. Food Chemistry, 106(1), 85-89. https://doi.org/10.1016/j.foodchem.2007.05.071
Kim, J. M., Park, S. J., Lee, C. S., Ren, C., Kim, S. S., & Shin, M. (2011). Functional properties of different Korean sweet potato varieties. Food Science and Biotechnology, 20, 1501-1507. https://doi.org/10.1007/s10068-011-0208-1
Kurata, R., Sun, H. N., Oki, T., Okuno, S., Ishiguro, K., & Sugawara, T. (2019). Sweet potato polyphenols. In Sweet Potato, 177-222. Academic Press. https://doi.org/10.1016/B978-0-12-813637-9.00007-7
Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., & Premier, R. (2007). Phytochemical flavonols, carotenoids, and the antioxidant properties of a wide selection of Fijian fruits, vegetables, and other readily available foods. Food Chemistry, 101(4), 1727-1741. https://doi.org/10.1016/j.foodchem.2006.01.031
Li, M., Jang, G. Y., Lee, S. H., Kim, M. Y., Hwang, S. G., Sin, H. M., & Jeong, H. S. (2017). Comparison of functional components in various sweet potato leaves and stalks. Food science and biotechnology, 26, 97-103. https://doi.org/10.1007/s10068-017-0013-6
Liao, W. C., Lai, Y. C., Yuan, M. C., Hsu, Y. L., & Chan, C. F. (2011). Antioxidative activity of water extract of sweet potato leaves in Taiwan. Food Chemistry, 127(3), 1224-1228. https://doi.org/10.1016/j.foodchem.2011.01.131
Luo, D., Mu, T., & Sun, H. (2021). Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their antioxidant and hypoglycemic activities. Food Bioscience, 39, 100801. https://doi.org/10.1016/j.fbio.2020.100801
Makkar, H. P., Blümmel, M., Borowy, N. K., & Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture, 61(2),161-165. https://doi.org/10.1002/jsfa.2740610205
Makori, S. I., Mu, T. H., & Sun, H. N. (2020). Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Natural Product Communications, 15(7). https://doi.org/10.1177/1934578X20936931
Mau, J. L., Lee, C. C., Yang, C. W., Chen, R. W., Zhang, Q. F. & Lin, S. D. (2020). Physicochemical, antioxidant, and sensory characteristics of bread partially substituted with aerial parts of sweet potato. LWT, 117, 108602. https://doi.org/10.1016/j.lwt.2019.108602
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical science (London, England: 1979), 84(4), 407-412. https://doi.org/10.1042/cs0840407
Nagai, M., Tani, M., Kishimoto, Y., Iizuka, M., Saita, E., Toyozaki, M., & Kondo, K. (2011). Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low-density lipoprotein (LDL) in vitro and in human subjects. Journal of Clinical Biochemistry and Nutrition, 48(3), 203-208. https://doi.org/10.3164/jcbn.10-84
Rahaman, M. A. (2015). Genetic diversity, correlation and path co-efficient analysis for yield of commercial maize varieties (Zea Mays L.). Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.
Rahaman, M. A. (2016). Study of nature and magnitude of gene action in hybrid rice (Oryza sativa L.) through experiment of line x tester mating design. International Journal of Applied Research, 2 (2), 405-410.
Rahaman, M. A., Islam, S., & Deb, U. (2023). Antioxidant capacities with total phenolics contents in the 14 greenhouse grown sweetpotato (Ipomoea batatas L) leaf extracts. Journal of Agricultural, Environmental and Consumer Sciences, 23, 39-48.
Rodriguez-Amaya, D. B. (1999). Changes in carotenoids during processing and storage of foods. Archivos latinoamericanos de nutrición, 49 (3 Suppl 1), 38S-47S.
Suarez, S., Mu, T., Sun, H., & Añón, M. C. (2020). Antioxidant activity, nutritional, and phenolic composition of sweet potato leaves as affected by harvesting period. International Journal of Food Properties, 23(1), 178-188. https://doi.org/10.1080/10942912.2020.1716796
Sun, H., Mu, T., Xi, L., Zhang, M., & Chen, J. (2014). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chemistry, 156, 380-389. https://doi.org/10.1016/j.foodchem.2014.01.079
Sun, Y., Pan, Z., Yang, C., Jia, Z., & Guo, X. (2019). Comparative assessment of phenolic profiles, cellular antioxidant, and antiproliferative activities in ten varieties of sweet potato (Ipomoea Batatas) storage roots. Molecules, 24(24), 4476. https://doi.org/10.3390/molecules24244476
Taira, J., Taira, K., Ohmine, W., & Nagata, J. (2013). Mineral determination and anti-LDL oxidation activity of sweet potato (Ipomoea batatas L.) leaves. Journal of Food Composition and Analysis, 29(2), 117-125. https://doi.org/10.1016/j.jfca.2012.10.007
Tyrakowska, B., Soffers, A. E., Szymusiak, H., Boeren, S., Boersma, M. G., Lemańska, K., & Rietjens, I. M. (1999). TEAC antioxidant activity of 4-hydroxybenzoate. Free Radical Biology and Medicine, 27(11-12), 1427-1436. https://doi.org/10.1016/S0891-5849(99)00192-6
Wang, S., Nie, S., Zhu, F. (2016). Chemical constituents and health effects of sweet potato. Food Research International, 89, 90-116. https://doi.org/10.1016/j.foodres.2016.08.032
Xu, W., Liu, L., Hu, B., Sun, Y., Ye, H., Ma, D., & Zeng, X. (2010). TPC in the leaves of 116 sweet potato (Ipomoea batatas L.) varieties and Pushu 53 leaf extracts. Journal of Food Composition and Analysis, 23(6), 599-604. https://doi.org/10.1016/j.jfca.2009.12.008
Yooyongwech, S., Theerawitaya, C., Samphumphuang, T., & Cha-um, S. (2013). Water-deficit tolerant identification in sweet potato genotypes (Ipomoea batatas L.) in vegetative developmental stage using multivariate physiological indices. Scientia Horticulturae, 162, 242-251. https://doi.org/10.1016/j.scienta.2013.07.041
Zhang, Y., Niu, F., Sun, J., Xu, F., & Yue, R. (2015). Purple sweet potato (Ipomoea batatas L.) color alleviates high-fat-diet-induced obesity in SD rat by mediating leptin’s effect and attenuating oxidative stress. Food Science and Biotechnology, 24(4), 1523-1532. https://doi.org/10.1007/s10068-015-0196-7
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.