Molecular Marker Techniques and Genotypic Characterization Approaches in Plant Breeding
DOI:
https://doi.org/10.24925/turjaf.v12i8.1487-1498.6806Anahtar Kelimeler:
Plant breeding- Molecular Breeding- Molecular Markers- Genotypic CharacterizationÖzet
Plant breeding, often known as the science of plant development, is the study and practice of modifying a plant’s genetic makeup through a variety of breeding techniques to produce higher-quality, more prolific, and more resistant to harsh environmental circumstances. Classical breeding programs are indispensable techniques for increasing yields and improving plant characteristics, but they are progressing too slowly to meet the increasing food demand of the rapidly growing world population alone. Considering that the development periods of plants are generally long in traditional plant breeding, the opportunity to develop higher quality and more productive species that are more resistant to abiotic and biotic stress factors is very limited. Because there are multiple steps required in producing new plant varieties, including hybridization, selection, and testing, the process of creating a new variation takes several years. However, it is important to rapidly develop plant varieties with desirable characteristics to meet the increasing food demand of the rapidly growing world population, so the application of biotechnological methods integrated into plant breeding and combined with traditional methods can help reduce food shortages. Today, with the quick acceleration of biotechnology, molecular DNA marker technology has been developed in plant breeding and very important developments have been experienced. Thanks to the development of molecular tools for genetic research aimed at improving agricultural traits in plants related to crop yield, crop quality, or tolerance to adverse environmental conditions, we now have a much better understanding of plant genetics and the architecture and function of plant genomes. Therefore, it is of critical importance to revise current breeding procedures by incorporating molecular markers into breeding programs in the future.
Referanslar
Ahmad, F., Khan, A. I., Awan, F. S., Sadia, B., Sadaqat, H. A., & Bahadur, S. (2010). Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis. Genetics and Molecular Research, 9(3), 1414-1420.
Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., ... & Kilian, A. (2006). Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theoretical and applied genetics, 113, 1409-1420.
Aksu, M., Çevik, M.Ş. (2015). Use of Moleculer Markers in Fruit Breeding, Fruit Science, ISSN: 2148-0036, 2(1), 49-59
Aktas, H., Abak, K., & Sensoy, S. (2009). Genetic diversity in some Turkish pepper (Capsicum annuum L.) genotypes revealed by AFLP analyses. African Journal of Biotechnology, 8(18).
Al-Ashkar, I., Alderfasi, A., Ben Romdhane, W., Seleiman, M. F., El-Said, R. A., & Al-Doss, A. (2020). Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants, 9(3), 287.
Alheit, K. V., Reif, J. C., Maurer, H. P., Hahn, V., Weissmann, E. A., Miedaner, T., & Würschum, T. (2011). Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC genomics, 12, 1-14.
Allwright, M. R., & Taylor, G. (2016). Molecular breeding for improved second generation bioenergy crops. Trends in Plant Science, 21(1), 43-54.
Althoff, D. M., Gitzendanner, M. A., & Segraves, K. A. (2007). The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Systematic biology, 56(3), 477-484.
Amiteye, S. (2021). Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7(10).
Amom, T., & Nongdam, P. (2017). The use of molecular marker methods in plants: a review. International Journal of Current Research and Review, 9(17), 1-7.
Arystanbek Kyzy, M. (2019). Genetic Characterization Of Some Wild Emmer Wheat Genotypes (Triticum Dicoccoides) From Turkey By Ipbs-Retrotransposon Markers (M.S. thesis).
Babu, K. N., Sheeja, T. E., Minoo, D., Rajesh, M. K., Samsudeen, K., Suraby, E. J., & Kumar, I. P. V. (2021). Random amplified polymorphic DNA (RAPD) and derived techniques. Molecular Plant Taxonomy: Methods and Protocols, 219-247.
Badea, A., Eudes, F., Salmon, D., Tuvesson, S., Vrolijk, A., Larsson, C. T., ... & Laroche, A. (2011). Development and assessment of DArT markers in triticale. Theoretical and Applied Genetics, 122, 1547-1560.
Bark, O. H., & Havey, M. J. (1995). Similarities and relationships among populations of the bulb onion as estimated by nuclear RFLPs. Theoretical and Applied Genetics, 90, 407-414.
Begna, T., Yesuf, H., Abdurezake, M., & Eshetu, G. (2021). Genetic mapping in crop plants. Open Journal of Plant Science, 6(1), 019-026.
Beissinger, T. M., Hirsch, C. N., Sekhon, R. S., Foerster, J. M., Johnson, J. M., Muttoni, G., ... & de Leon, N. (2013). Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics, 193(4), 1073-1081.
Bharti, A. (2023). Single Nucleotide Polymorphism, SNP, Markers, Polymorphism, Characterization, Molecular, Mechanism of action, Basic concepts. ( https://www.slideshare.net/alokbharti18/snp-pptpptx Date of access: 29.05.2024)
Bhattarai, G., Shi, A., Feng, C., Dhillon, B., Mou, B., & Correll, J. C. (2020). Genome wide association studies in multiple spinach breeding populations refine downy mildew race 13 resistance genes. Frontiers in Plant Science, 11, 563187.
Bianco, C. L., Fernández, J. A., Migliaro, D., Crinò, P., & Egea-Gilabert, C. (2011). Identification of F1 hybrids of artichoke by ISSR markers and morphological analysis. Molecular breeding, 27, 157-170.
Brookes, A. J. (1999). The essence of SNPs. Gene, 234(2), 177-186.
Bruel, D. C., Carpentieri-Pipolo, V., de Fátima Ruas, C., Gerage, A. C., & de Souza, S. G. H. (2007). Assessment of genetic diversity in maize inbred lines using RAPD markers. Crop Breeding and Applied Biotechnology, 7(2).
Cavanagh, C. R., Chao, S., Wang, S., Huang, B. E., Stephen, S., Kiani, S., ... & Akhunov, E. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the national academy of sciences, 110(20), 8057-8062.
Chatterjee, S. N., Vijayan, K., Roy, G. C., & Nair, C. V. (2004). ISSR profiling of genetic variability in the ecotypes of Antheraea mylitta Drury, the tropical tasar silkworm. Russian Journal of Genetics, 40, 152-159.
Chawla, H. S. (ed), (2002). Introduction to plant biotechnology. pp: 330-358. Science Publisher Inc, Second edition, USA.
Ching, A. D. A., Caldwell, K. S., Jung, M., Dolan, M., S (Howie) Smith, O., Tingey, S., ... & Rafalski, A. J. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC genetics, 3, 1-14.
Christou, P., Capell, T., Kohli, A., Gatehouse, J. A., & Gatehouse, A. M. (2006). Recent developments and future prospects in insect pest control in transgenic crops. Trends in plant science, 11(6), 302-308.
Crouch, J. H., & Ortiz, R. (2004). Applied genomics in the improvement of crops grown in Africa. African journal of biotechnology, 3(10), 489-496.
Çakır, E. (2023). Molecular Markers from Past To Present And Theır Applıcatıon Areas. Regeneratıve Agrıculture, 19.
Çifci, E. A., & Yağdı, K. (2010). Determination of Genetic Diversity of Durum Wheats Cultivated in Turkey. Journal of Agricultural Faculty of Uludag University, 25, (1), 2, 7-18.
Dal Canbar, Y. (2023). Development Of Whole Genome Ssr Markers In Spinach (Spinacia oleracea L.) and Creating A Qualified Gene Pool (Ph.D. dissertation). Selcuk University.
Dar, A. A., Mahajan, R., & Sharma, S. (2019). Molecular markers for characterization and conservation of plant genetic resources. Indian Journal of Agricultural Sciences, 89(11), 1755-1763.
Dar, A. A., Mahajan, R., Lay, P., & Sharma, S. (2017). Genetic diversity and population structure of Cucumis sativus L. by using SSR markers. 3 Biotech, 7, 1-12.
De Meijer, E. P., Bagatta, M., Carboni, A., Crucitti, P., Moliterni, V. C., Ranalli, P., & Mandolino, G. (2003). The inheritance of chemical phenotype in Cannabis sativa L. Genetics, 163(1), 335-346.
Delannay, X., Bauman, T. T., Beighley, D. H., Buettner, M. J., Coble, H. D., DeFelice, M. S., ... & Padgette, S. R. (1995). Yield evaluation of a glyphosate‐tolerant soybean line after treatment with glyphosate. Crop Science, 35(5), 1461-1467.
Desplanque, B., Boudry, P., Broomberg, K., Saumitou-Laprade, P., Cuguen, J., & Van Dijk, H. (1999). Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theoretical and Applied Genetics, 98, 1194-1201.
Devran, Z. (2016). Use of Molecular Markers ın Resistance Breeding. Derim, 20(1), 1-6.
do Amaral Júnior, A. T., de Oliveira, É. C., Gonçalves, L. S. A., Scapim, C. A., Candido, L. S., da Conceição Silva, T. R., ... & da Cunha, K. S. (2011). Assessment of genetic diversity among maize accessions using inter simple sequence repeats (ISSR) markers. African Journal of Biotechnology, 10(69), 15462-15469.
Eagles, H. A., Bariana, H. S., Ogbonnaya, F. C., Rebetzke, G. J., Hollamby, G. J., Henry, R. J., ... & Carter, M. (2001). Implementation of markers in Australian wheat breeding. Australian Journal of Agricultural Research, 52(12), 1349-1356.
Fan, J. B., Gunderson, K. L., Bibikova, M., Yeakley, J. M., Chen, J., Garcia, E. W., ... & Barker, D. (2006). [3] illumina universal bead arrays. Methods in enzymology, 410, 57-73.
Fang, J., Zhu, X., Wang, C., & Shangguan, L. (2016). Applications of DNA technologies in agriculture. Current Genomics, 17(4), 379-386.
Federici, C. T., Fang, D. Q., Scora, R. W., & Roose, M. L. (1998). Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theoretical and Applied Genetics, 96, 812-822.
Fernandez, M., Figueiras, A., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104, 845-851.
Filiz, E., & İbrahim, K., (2011). Molecular Markers in Plant Biotechnology. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 2011(2).
Flavell, R. B. (1989). Plant biotechnology and its application to agriculture. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 324(1224), 525-535.
García-Gonzáles, R., Quiroz, K., Carrasco, B., & Caligari, P. (2010). Plant tissue culture: Current status, opportunities and challenges. International Journal of Agriculture and Natural Resources, 37(3), 5-30.
Genişel, H. (2013). Using Issr Markers For Characterization Of New Meadow Saffron (Colchicum L.) Species Candidates In The Flora Of Turkey. Istanbul University The Graduate School of Natural and Applied Science, Master’s Thesis, İstanbul.
Gonçalves, L. S. A., Rodrigues, R., do Amaral Junior, A. T., Karasawa, M., & Sudré, C. P. (2009). Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genetics and molecular research, 8(1), 364-374.
Gökalp, M. (2022). Development Of Ssr Markers For Genetic Stability Testing In Bread Wheat (Triticum aestivum L.) Necmettin Erbakan University, The Graduate School of Natural and Applied Science, Department of Molecular Biology and Genetics, Konya.
Gözel, U., Çiğdem, Y. U. R. T., & GÖZEL, Ç. (2016). Molecular markers used in nematode taxonomy. Türkiye Entomology Bulletin, 6(2), 179-189.
Grover, A., & Sharma, P. C. (2016). Development and use of molecular markers: past and present. Critical reviews in biotechnology, 36(2), 290-302.
Gupta, M., Chyi, Y. S., Romero-Severson, J., & Owen, J. L. (1994). Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and applied genetics, 89, 998-1006.
Ibrahim, H., Salama, A. M., & Abou El-Leel, O. F. (2017). Analysis of genetic diversity of Lavandula species using taxonomic, essential oil and molecular genetic markers. Sciences, 7(01), 141-154.
Jaccoud, D., Peng, K., Feinstein, D., & Kilian, A. (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic acids research, 29(4), e25-e25.
James, C. (2008). Global Status of Commercialized Biotech/ GM Crops: 2008. ISAAA Brief No. 39. ISAAA: Ithaca, NY. 243 pp.
Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Individual-specific ‘fingerprints’ of human DNA. Nature, 316(6023), 76-79.
Jiang, G. L. (2013). Plant breeding from laboratories to fields. Molecular markers and markerassisted breeding in plants. IntechOpen, 45-83.
Jonah, P. M., Bello, L. L., Lucky, O., Midau, A., & Moruppa, S. M. (2011). The importance of molecular markers in plant breeding programmes. Global Journal of Science Frontier Research, 11(5), 5-12.
Joshi, S. P., Ranjekar, P. K., & Gupta, V. S. (1999). Molecular markers in plant genome analysis. Current Science, 230-240.
Joshi, S.P., Prabhakar K., Ranjekar, P.K and Gupta, V.S. (2011), Molecular markers in plant genome analysis. http/www.ias.ac.in/currsci/jul25/articles 15. htm. Pp 1-19
Jun, T. H., Van, K., Kim, M. Y., Lee, S. H., & Walker, D. R. (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 162, 179-191.
Karaca, D. İ. D. E. M., & Izbirak, A. (2008). Comparative analysis of genetic diversity in Turkish durum wheat cultivars using RAPD and ISSR markers. Journal Of Food Agriculture & Environment, 6.
Karakas, I. (2023). Using the Totipotency Abilities of Plants in Plant Breeding: Tissue Culture Techniques. Acta Natura et Scientia, 4(2), 94-113. doi: 10.29329/actanatsci.2023.354.1
Karcıcıo, M. (2006). Analysis Of Genetic Diversity In Landraces Of Macoroni Wheat (Triticum Durum Desf.) By Rapd-Pcr Technique (Ph.D. dissertation).
Karp, A. (1997). Molecular tools in plant genetic resources conservation: a guide to the technologies (No. 2). Bioversity International.
Kesawat, M. S., & Das Kumar, B. (2009). Molecular markers: it’s application in crop improvement. Journal of Crop Science and Biotechnology, 12, 169-181.
Kilian, B., Ozkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F., Martin, W. (2007). Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol., 24(12):2657–68.
Koelling, J., Coles, M. C., Matthews, P. D., & Schwekendiek, A. (2012). Development of new microsatellite markers (SSRs) for Humulus lupulus. Molecular breeding, 30, 479-484.
Korzun, V. (2002). Use of molecular markers in cereal breeding. Cellular and molecular biology letters, 7(2B), 811-820.
Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., ... & Evola, S. V. (1993). Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology, 11(2), 194-200.
Kumar, S., Kumar, V., Kumari, P., Kirti, Singh, A. K., & Singh, R. (2016). DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. Journal of Environmental Biology, 37(2), 319-326. Retrieved from https://www.proquest.com/scholarly-journals/dna-fingerprinting-genetic-diversity-studies/docview/1784094438/se-2
Lammerts van Bueren, E. T., Backes, G., De Vriend, H., & Østergård, H. (2010). The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica, 175, 51-64.
Laurentin, H. (2009). Data analysis for molecular characterization of plant genetic resources. Genetic Resources and Crop Evolution, 56, 277-292.
Liu, J., Shi, L., Han, J., Li, G., Lu, H., Hou, J., ... & Downie, S. R. (2014). Identification of species in the angiosperm family Apiaceae using DNA barcodes. Molecular ecology resources, 14(6), 1231-1238.
Liu, N., Li, M., Hu, X., Ma, Q., Mu, Y., Tan, Z., ... & Nian, H. (2017). Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC genomics, 18(1), 1-13.
Liu, Z. (2007). Randomly amplified polymorphic DNA (RAPD). Aquaculture genome technologies, 21-28.
Lombardi, M., Materne, M., Cogan, N. O., Rodda, M., Daetwyler, H. D., Slater, A. T., ... & Kaur, S. (2014). Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC genetics, 15, 1-10.
Lopes, A. D., Scapim, C. A., Machado, M. D. F. P. D. S., Mangolin, C. A., Silva, T. A., Cantagali, L. B., ... & Mora, F. (2015). Genetic diversity assessed by microsatellite markers in sweet corn cultivars. Scientia Agricola, 72, 513-519.
Mace, E. S., Xia, L., Jordan, D. R., Halloran, K., Parh, D. K., Huttner, E., ... & Kilian, A. (2008). DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC genomics, 9, 1-11.
Matsuoka, Y., Mitchell, S. E., Kresovich, S., Goodman, M., & Doebley, J. (2002). Microsatellites in Zea–variability, patterns of mutations, and use for evolutionary studies. Theoretical and Applied Genetics, 104, 436-450.
McDermott, J.M., Brandle, U., Dutly, F., Haemmerli, U.A., Keller, S., Muller, K.E and Wolf, M.S. 1994. Genetic variation in powdery mildew of barley: Development of RAPD, SCAR and VNTR markers. Phytopathology 84; 1316-1321.
Mert, M., Gencer, O., AKIŞCAN, Y., & Boyaci, K. (2003). Determination of superior parents and hybrid combinations in respect to lint yield and yield components in cotton (Gossypium hirsutum L.). Turkish Journal of Agriculture and Forestry, 27(6), 337-343.
Mian, M. R., Hopkins, A. A., & Zwonitzer, J. C. (2002). Determination of genetic diversity in tall fescue with AFLP markers. Crop science, 42(3), 944-950.
Milczarski, P., Bolibok-Brągoszewska, H., Myśków, B., Stojałowski, S., Heller-Uszyńska, K., Goralska, M., ... & Rakoczy-Trojanowska, M. (2011). A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS one, 6(12), e28495.
Miller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and applied genetics, 80, 437-448.
Mondini, L., Noorani, A., & Pagnotta, M. A. (2009). Assessing plant genetic diversity by molecular tools. Diversity, 1(1), 19-35.
Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant physiology, 147(3), 969-977.
Morgan, T. H. (1910). Sex limited inheritance in Drosophila. Science, 32(812), 120-122.
Motallebinia, S., Sofalian, O., Asghari, A., Rasoulzadeh, A., & Achachlouei, B. F. (2024). Genetic diversity and morpho-physiological assessment of drought tolerance in rapeseed (Brassica napus L.) cultivars. Plant Genetic Resources, 1-10.
Muzzalupo, I., Vendramin, G. G., & Chiappetta, A. (2014). Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. The Scientific World Journal, 2014.
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., ... & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285.
Navarro Mastache, L.C., (2007). Large scale commercial micropropagation in Mexico. The experience of Agromod, S.A. de C.V. Acta Horticulturae (ISHS) 748:91-94.
Pan, Y. B. (2006). Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 8, 246-256.
Paran, I., & Michelmore, R. W. (1993). Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and applied genetics, 85, 985-993.
Pareek, L. K., (2006). Trends in plant tissue culture and biotechnology. Agrobios.
Parker, G. D., Fox, P. N., Langridge, P., Chalmers, K., Whan, B., & Ganter, P. F. (2002). Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica, 124, 293-306.
Paterson, A. H. (1996). Making genetic maps. Genome mapping in plants, 194, 23-39.
Poland, J. A., & Rife, T. W. (2012). Genotyping‐by‐sequencing for plant breeding and genetics. The plant genome, 5(3).
Pradeep Reddy, M., Sarla, N., & Siddiq, E. A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. euphytica, 128, 9-17.
Premkrishnan, B. V., & Arunachalam, V. (2012). In silico RAPD priming sites in expressed sequences and iSCAR markers for oil palm. Comparative and Functional Genomics, 2012.
Racedo, J., Gutiérrez, L., Perera, M. F., Ostengo, S., Pardo, E. M., Cuenya, M. I., ... & Castagnaro, A. P. (2016). Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC plant biology, 16, 1-16.
Rafalski, J. A. and Tingey, S. V. (1993). Genetic Diagnostic in plant breeding: RAPDS. microsatallites and machines. TIG. 9. 275-279.
Rajarajan, K., & Ganesamurthy, K. (2011). Genetic diversity analysis of sorghum (Sorghum bicolor L. Moench) genotypes for drought tolerance using SSR markers. Indian Journal of Genetics and Plant Breeding, 71(01), 17-24.
Ramakrishnan, M., Ceasar, S. A., Duraipandiyan, V., & Ignacimuthu, S. (2014). Efficient plant regeneration from shoot apex explants of maize (Zea mays) and analysis of genetic fidelity of regenerated plants by ISSR markers. Plant Cell, Tissue and Organ Culture (PCTOC), 119, 183-196.
Ramanatha Rao, V., & Hodgkin, T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. Plant cell, tissue and organ culture, 68, 1-19.
Rao, N. K. (2004). Plant genetic resources: Advancing conservation and use through biotechnology. African Journal of biotechnology, 3(2), 136-145.
Ridout, C. J., Donini, P., Ridout, C. J., & Donini, P. (1999). Use of AFLP in cereals research. Trends in Plant Science, 4(2), 76-79.
Rongwen, J., Akkaya, M. S., Bhagwat, A. A., Lavi, U., & Cregan, P. B. (1995). The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics, 90, 43-48.
Röder, M. S., Plaschke, J., König, S. U., Börner, A., Sorrells, M. E., Tanksley, S. D., & Ganal, M. W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG, 246, 327-333.
Salem, K. F. M., El-Zanaty, A. M., & Esmail, R. M. (2008). Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World Journal of Agricultural Sciences, 4(5), 538-544.
Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8(6), 552-560.
Sebbenn, A. M., Zanatto, A. C. S., Freitais, M. L. M., Sato, A. S., & de Castro Ettori, L. (2005). Genetic variation among and within sweet corn populations detected by RAPD and SSR markers. Crop Breeding and Applied Biotechnology, 5(4).
Semagn, K., Bjørnstad, Å., & Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. African journal of biotechnology, 5(25).
Shaibu, A. S., Ibrahim, H., Miko, Z. L., Mohammed, I. B., Mohammed, S. G., Yusuf, H. L., ... & Karikari, B. (2021). Assessment of the genetic structure and diversity of soybean (Glycine max L.) germplasm using diversity array technology and single nucleotide polymorphism markers. Plants, 11(1), 68.
Sharma, S., & Sharma, A. (2018). Molecular markers based plant breeding. Advances in Research, 16(1), 1-15.
Shidfar, M. (2014). Use of molecular markers for developing new cultivars tolerant to plasmopara viticola and (erysiphe- uncinula necator) diseases based on marker assisted selection-(mas) on vitis vinifera (Ph.D. dissertation). Ankara University.
Somers, D. J., Isaac, P., & Edwards, K. (2004). A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and applied genetics, 109, 1105-1114.
Sorkheh, K., Shiran, B., Gradziel, T. M., Epperson, B. K., Martínez-Gómez, P., & Asadi, E. (2007). Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica, 156, 327-344.
Sönmezoğlu, Ö. A., Yıldırım, A., Güleç, T., 2010. “Single Nucleotide Differences (SNP) and Its Use in Wheat”, Turkish Journal of Scientific Reviews, 3(2): 55-66.
Stachel, M., Lelley, T., Grausgruber, H., & Vollmann, J. (2000). Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theoretical and Applied Genetics, 100, 242-248.
Tommasini, L., Batley, J., Arnold, G., Cooke, R., Donini, P., Lee, D., ... & Edwards, K. (2003). The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theoretical and Applied Genetics, 106, 1091-1101.
Tonk, F. A., Yüce, S., Bayram, E., Akçali Giachino, R. R., Sönmez, Ç., Telci, I., & Furan, M. A. (2010). Chemical and genetic variability of selected Turkish oregano (Origanum onites L.) clones. Plant systematics and evolution, 288, 157-165.
Turcotte, H., Hooker, J., Samanfar, B., & Parent, J. S. (2022). Can epigenetics guide the production of better adapted cultivars?. Agronomy, 12(4), 838.
Uslu, O. Y. (2022). Morphological And Molecular Characterization Of Some Local Leek Genotypes Grown In Turkey (M.S. thesis).
van Berloo, R. (2000). Use of molecular markers in plant breeding. Wageningen University and Research.
Vardar-Kanlitepe, Ç., Aras, S., & Cansa, D. (2010). Application of the Molecular Marker and Gene Transfer in Plant Breeding. Turkish Journal of Hygiene and Experimental Biology, 67(1), 33-43.
Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in biotechnology, 27(9), 522-530.
Vasil, I. K. 1994. Molecular Improvement Of Cereals. Plant Molecular Biology 25:925-937.
Vianna, L. S., Pereira, T., Santos, E., Vianna, A., Pereira, M., & Ramos, H. (2019). ISSR and SSR markers for determining genetic relationships among three wild species of Passiflora. Genetic and Molecular Research, 18, 1-10.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. V. D., Hornes, M., ... & Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic acids research, 23(21), 4407-4414.
Walton, M. (1993). Molecular markers: which ones to use. Seed World, 131(8), 22-24.
Wang, C., Zhang, Y., Zhu, Z., Chen, T., Zhao, L., Lin, J., & Zhou, L. (2010). Development of a new japonica rice variety Nan-jing 46 with good eating quality by marker assisted selection. Rice Genomics and Genetics, 1.
Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., ... & Lander, E. S. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280(5366), 1077-1082.
Weber, J. L. (1990). Informativeness of human (dC-dA) n·(dG-dT) n polymorphisms. Genomics, 7(4), 524-530.
Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic acids research, 18(24), 7213-7218.
Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., & Kilian, A. (2004). Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences, 101(26), 9915-9920.
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V., (1990). DNA Polimorphisms Amplified by Arbitrary Primers are Useful as Genetic Markers. Nucl. Acids Res., 18, 6531-6535.
Wolfe, A. D., & Liston, A. (1998). Contributions of PCR-based methods to plant systematics and evolutionary biology. In Molecular systematics of plants II: DNA sequencing (pp. 43-86). Boston, MA: Springer US.
Wolff, K., & Peters-van Rijn, J. (1993). Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers. Heredity, 71(4), 335-341.
Xu, Y. F., Li, S. S., Li, L. H., Ma, F. F., Fu, X. Y., Shi, Z. L., ... & An, D. G. (2017). QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular breeding, 37, 1-18.
Yang, H. B., Kang, W. H., Nahm, S. H., & Kang, B. C. (2015). Methods for developing molecular markers. In Current Technologies in Plant Molecular Breeding: A Guide Book of Plant Molecular Breeding for Researchers (pp. 15-50). Dordrecht: Springer Netherlands.
Yang, X., Ren, R., Ray, R., Xu, J., Li, P., Zhang, M., ... & Kilian, A. (2016). Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Plant Genetic Resources, 14(3), 226-233.
Yıldırım, A. and Kandemir, N., Özcan, S., Gürel, E. ve Babaoğlu, M. 2001. Genetic Markers and Analysis Methods. Plant Biotechnology. Genetic Engineering and Applications. Selcuk University Press Konya. s;334–336.
Yılmaz, A., (2021). The Importance Of Molecular Markers In Plant Breeding.
Yorgancilar, M., Yakisir, E., & Erkoyuncu, M. T. (2015). The Usage of Molecular Markers In Plant Breedıng.
Young, N. D., Menancio-Hautea, D., Fatokun¹, C. A., & Danesh, D. (1992). RFLP technology, crop improvement, and international agriculture¹. Biotechnology: Enhancing Research on Tropical Crops in Africa, 221.
Zhao, R., Liu, B., Wan, W., Jiang, Z., Chen, T., Wang, L., & Bie, T. (2023). Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method. Theoretical and Applied Genetics, 136(1), 1.
Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183.
Zuurbier, P. (1994). Diagnosing the seed industry. Prophyta, 4, 10-27.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.