Antep Fıstığında Bezelye ve Ispanak Tağşişinin Düşük Maliyetli Spektral Sensör Kullanılarak Tespiti
DOI:
https://doi.org/10.24925/turjaf.v12is2.2206-2215.6814Anahtar Kelimeler:
tağşiş- kemometrik yöntemler- PCA- derin öğrenme- Yapay Sinir AğlarıÖzet
Antep fıstığı, başta baklava olmak üzere birçok tatlıda sıkça kullanılan bir üründür. Özellikle öğütülmüş Antep fıstığı, talebin yüksek olması ve yüksek maliyeti nedeniyle sıklıkla tağşişe maruz kalmaktadır. Yeşil bezelye ve ıspanak, organoleptik özellikleri, renk benzerliği ve ucuzluğu nedeniyle Antep fıstığı ile karıştırılarak en çok sahtecilik gerçekleştirilen ürünler arasındadır. Ancak bu ürünlerin öğütülmüş Antep fıstığına belirli oranlarda karıştırılması durumunda sahteciliğin hızlı ve yerinde tespiti, gözle muayene gibi yöntemlerle çoğu zaman mümkün olmamaktadır. Bu nedenle mevcut çalışma, Antep fıstığındaki yeşil bezelye ve ıspanak tağşişinin, düşük maliyetli bir spektral sensör teknolojisi ve kemometrik yöntemler kullanılarak tespitini amaçlamaktadır. Bu kapsamda yeşil bezelye ve ıspanak örnekleri Antep fıstığı ile %5-50 (a/a) arasındaki konsantrasyonlarda %5’lik artışlarla karıştırılmıştır. Saf Antep fıstığı ve karışık numunelerin reflektans spektrumları 410-940 nm arasında elde edilmiştir. Numunelerdeki sahtecilik oranlarının tespiti amacıyla geliştirilen modelin eğitilmesinde derin öğrenme yöntemi kullanılmıştır. Modele beslenen verilerde boyut indirgeme amacıyla Temel Bileşenler Analizinden faydalanılmış olup, regresyon probleminin uyum iyiliğini test etmek amacıyla belirleme katsayısı (R2), hata kareler ortalamasının karekökü (RMSE) ve artıklık tahminsel sapma (RPD) istatistikleri kullanılmıştır. Sırasıyla eğitim, doğrulama ve test verileri için R2 0,85, 0,83 ve 0,80; RMSE 5,81, 6,13 ve 6,71; RPD 2,55, 2,44 ve 2,21 olarak tespit edilmiştir. Elde edilen bulgular neticesinde, söz konusu ekonomik spektral sensör ve geliştirilen kemometrik yöntemin Antep fıstığında özellikle %10 üzerindeki yeşil bezelye ve ıspanak tağşiş oranının belirlenmesi için tahribatsız, hızlı ve kolay bir yöntem olarak kullanılma potansiyeline sahip olduğu ortaya konmuştur.
Referanslar
Anagaw, Y. K., Ayenew, W., Limenh, L. W., Geremew, D. T., Worku, M. C., Tessema, T. A., Simegn, W. & Mitku, M. L. (2024). Food adulteration: Causes, risks, and detection techniques—review. SAGE Open Medicine, 12, 20503121241250184. https://doi.org/10.1177/20503121241250184.
Aykas, D. P. & Menevseoglu, A. (2021). A rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics. Food Control, 121. https://doi.org/10.1016/j.foodcont.2020.107670.
Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M. & McBratney, A. (2010). Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9), 1073-1081. https://doi.org/10.1016/j.trac.2010.05.006.
Bro, R. & K. Smilde, A. (2014). Principal component analysis. Analytical Methods, 6(9), 2812-2831. https://doi.org/10.1039/C3AY41907J.
Campmajó, G., Navarro, G. J., Núñez, N., Puignou, L., Saurina, J. & Núñez, O. (2019). Non-targeted HPLC-UV fingerprinting as chemical descriptors for the classification and authentication of nuts by multivariate chemometric methods. Sensors, 19(6), 1388. https://doi.org/10.3390/s19061388.
Campmajó, G., Saez-Vigo, R., Saurina, J. & Núñez, O. (2020). High-performance liquid chromatography with fluorescence detection fingerprinting combined with chemometrics for nut classification and the detection and quantitation of almond-based product adulterations. Food Control, 114, 107265. https://doi.org/10.1016/j.foodcont.2020.107265.
Campmajó, G., Saurina, J. & Núñez, O. (2023). Liquid chromatography coupled to high-resolution mass spectrometry for nut classification and marker identification. Food Control, 152, 109834. https://doi.org/10.1016/j.foodcont.2023.109834.
Cen, H. & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18(2), 72-83. https://doi.org/10.1016/j.tifs.2006.09.003.
Çavuş, F., Us, M. F. & Güzelsoy, N. A. (2018). Assesing Pistachio Nut (Pistacia vera L.) Adulteration with Green Pea (Pisum sativum L.) by Untargeted Liquid Chromatography-(quadrupole-time of flight)-Mass Spectrometry Method and Chemometrics. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19), 34-41.
Çinarer, G., Doğan, N., Kılıç, K. & Doğan, C. (2024). Rapid detection of adulteration in pistachio based on deep learning methodologies and affordable system. Multimedia Tools and Applications, 83(5), 14797-14820. https://doi.org/10.1007/s11042-023-16172-5.
De Maesschalck, R., Candolfi, A., Massart, D. L. & Heuerding, S. (1999). Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemometrics and Intelligent Laboratory Systems, 47(1), 65-77. https://doi.org/10.1016/S0169-7439(98)00159-2.
DHA (2021). Baklavada “iç” hilesi! Ceviz yerine çekirdek, Antep fıstığı yerine..., CNN TÜRK. https://www.cnnturk.com/yasam/baklavada-ic-hilesi-ceviz-yerine-cekirdek-antep-fistigi-yerine.
Edwards, K., Manley, M., Hoffman, L. C. & Williams, P. J. (2021). Non-destructive spectroscopic and imaging techniques for the detection of processed meat fraud. Foods, 10(2), 448. https://doi.org/10.3390/foods10020448.
Eksi-Kocak, H., Mentes-Yilmaz, O. & Boyaci, I. H. (2016). Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. European Food Research and Technology, 242(2), 271-277. https://doi.org/10.1007/s00217-015-2538-3.
FAO (2022). FAOSTAT. https://www.fao.org/faostat/en/#data/QCL.
Fox, G. & Cruickshank, A. (2005). Near infrared reflectance as a rapid and inexpensive surrogate measure for fatty acid composition and oil content of peanuts (Arachis Hypogaea L.). Journal of Near Infrared Spectroscopy, 13(5), 287-291.
Genis, H. E., Durna, S. & Boyaci, I. H. (2021). Determination of green pea and spinach adulteration in pistachio nuts using NIR spectroscopy. LWT, 136. https://doi.org/10.1016/j.lwt.2020.110008.
Ghosh, S., Domínguez, T. R. C., Diezma, B., Lleó, L., Barreiro, P., Lacarra, T. G. & Roger, J.-M. (2015). VIS/NIR spectral signature for the identification of peanut contamination of powder foods.
Holbert, C. (2022). Outlier identification using mahalanobis distance. Charles Holbert. https://www.cfholbert.com/blog/outlier_mahalanobis_distance/.
Ivosev, G., Burton, L. & Bonner, R. (2008). Dimensionality reduction and visualization in principal component analysis, Analytical Chemistry, 80(13), 4933-4944. https://doi.org/10.1021/ac800110w.
Kalogiouri, N. P., Mitsikaris, P. D., Papadopoulos, A. N. & Samanidou, V. F. (2022). Microwave-assisted extraction coupled to HPLC-UV combined with chemometrics for the determination of bioactive compounds in pistachio nuts and the guarantee of quality and authenticity, Molecules, 27(4), 1435. https://doi.org/10.3390/molecules27041435.
Kavdir, I., Lu, R., Ariana, D. & Ngouajio, M. (2007). Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers. Postharvest Biology and Technology, 44(2), 165-174. https://doi.org/10.1016/j.postharvbio.2006.09.002.
Kelly, J. D., Petisco, C. & Downey, G. (2006). Potential of near infrared transflectance spectroscopy to detect adulteration of irish honey by beet invert syrup and high fructose corn syrup, Journal of Near Infrared Spectroscopy, 14(2), 139-146.
Kendirci, P. & Onoğur, T. A. (2011). Investigation of volatile compounds and characterization of flavor profiles of fresh pistachio nuts (Pistacia vera L.). International Journal of Food Properties, 14(2), 319-330. https://doi.org/10.1080/10942910903177830.
Khan, S., Xiaobo, Z., Ilyas, M., Rahman, K. U., Khan, R. D., Shahid, K., Ahmad, A., Akbar, H., Ahmad, T., Irfan, M., Zafar, Z., Iqbal, A. Z., Boateng, R. A., Maqbool, B., Harlioglu, M. M. & Jamil, M. (2021). Fraud food and food spoilage detection by non-destructive technologies, Annals of the Romanian Society for Cell Biology, 25(7), 1389-1405.
Lu, X., (2017). Sensing Techniques for Food Safety and Quality Control. Royal Society of Chemistry.
Meulebroeck, W. & Thienpont, H. (2006). Optical detection techniques for laser sorting machines. Optical Sensing II. Optical Sensing II, 358-369.
Modupalli, N., Naik, M., Sunil, C. K. & Natarajan, V. (2021). Emerging non-destructive methods for quality and safety monitoring of spices. Trends in Food Science & Technology, 108, 133-147. https://doi.org/10.1016/j.tifs.2020.12.021.
Mohammadi-Moghaddam, T., Razavi, S. M. A., Sazgarnia, A. & Taghizadeh, M. (2018). Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis. Journal of Food Measurement and Characterization, 12(1), 346-355. https://doi.org/10.1007/s11694-017-9646-7.
Nobari Moghaddam, H., Tamiji, Z., Akbari Lakeh, M., Khoshayand, M. R. & Haji Mahmoodi, M. (2022). Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics. Journal of Food Composition and Analysis, 107, 104343. https://doi.org/10.1016/j.jfca.2021.104343.
Sezer, B., Apaydin, H., Bilge, G. & Boyaci, I. H. (2019). Detection of Pistacia vera adulteration by using laser induced breakdown spectroscopy. Journal of the Science of Food and Agriculture, 99(5), 2236-2242. https://doi.org/10.1002/jsfa.9418.
Shenk, J. S. & Westerhaus, M. O. (1993). Analysis of agriculture and food products by near infrared reflectance spectroscopy.
SU (2020). Gıda sahtekarları açıklandı! Dana diye domuz, Antep fıstığı diye yer fıstığı satmışlar. https://www.sozcu.com.tr/canonicalUrl.
Suman, M., Cavanna, D., Sammarco, G., Lambertini, F. & Loffi, C. (2021). Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. TrAC Trends in Analytical Chemistry, 142, 116305. https://doi.org/10.1016/j.trac.2021.116305.
Sundaram, J., Kandala, C. V. & Butts, C. L. (2009). Application of near infrared spectroscopy to peanut grading and quality analysis: overview. Sensing and Instrumentation for Food Quality and Safety, 3(3), 156-164. https://doi.org/10.1007/s11694-009-9081-5.
Taskesen, E. (2023). What are PCA loadings and how to effectively use Biplots?. Towards Data Science. https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559.
Teixeira, A. M. & Sousa, C. (2019). A review on the application of vibrational spectroscopy to the chemistry of nuts. Food Chemistry, 277, 713-724. https://doi.org/10.1016/j.foodchem.2018.11.030.
Temizkan, R., Dogan, M. A., Atakan, O., Nazlım, B. A. & Ayvaz, H. (2020). Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy.
TOB (2019). Kamuoyu duyurusu, Tarım ve Orman Bakanlığı. https://www.dunya.com/storage/old/uploads/content/kamuoyu-duyurusu-tarim11pdf_NgT9T.pdf.
Turgut, S. S., Bilge, G., Entrenas, J. A. & Pérez-Marín, D. (2024). Significant roles of smart sensors in the modern agriculture and food industry, In A. Hassoun, (Eds.), Food Industry 4.0 (pp. 133-170). https://doi.org/10.1016/B978-0-443-15516-1.00008-6.
Vega-Castellote, M., Sánchez, M.-T., Torres-Rodríguez, I., Entrenas, J.-A. & Pérez-Marín, D. (2024). NIR sensing technologies for the detection of fraud in nuts and nut products: A review, Foods, 13(11), 1612. https://doi.org/10.3390/foods13111612.
Walach, J., Filzmoser, P. & Hron, K. (2018). Data normalization and scaling: Consequences for the analysis in omics sciences, Comprehensive Analytical Chemistry (pp. 165-196). https://doi.org/10.1016/bs.coac.2018.06.004.
Williams, P. (2001). Implementation of near-infrared technology. Near-infrared technology in the agricultural and food industries. https://cir.nii.ac.jp/crid/1572543025338730368.
Williams, P. C. & Sobering, D. C. (1993). Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 1(1), 25-32. https://doi.org/10.1255/jnirs.3.
Yuille, A. (2014). Lecture 10. PCA, SVD and Fisher Linear Discriminant.
Zannella, C., Carucci, F., Aversano, R., Prohaska, T., Vingiani, S., Carputo, D. & Adamo, P. (2017). Genetic and geochemical signatures to prevent frauds and counterfeit of high-quality asparagus and pistachio. Food Chemistry, 237, 545-552. https://doi.org/10.1016/j.foodchem.2017.05.158.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.