Effect of Sorbitol Spraying on Chlorophyl, Total Phenolic and Flavonoid in Fragaria ananassa. Duch. cv. Albion Leaves
DOI:
https://doi.org/10.24925/turjaf.v12i8.1352-1358.6930Anahtar Kelimeler:
Sorbitol,- Fragaria- Phenolic- Chlorophyll- Strawberry leafÖzet
Strawberry (Fragaria × ananassa Duch.) is one of the most widely consumed and cultivated fruits worldwide. Sorbitol plays a role in plant responses to many biotic and abiotic stresses. In this research, we intended to understand the effect of sorbitol spraying on the bioactive compounds of strawberry leaves. The application of sorbitol at different concentrations (0, 25, 50 mM and 75 mM) greatly improved strawberry characteristics such as total chlorophyll, chlorophyll a and b, carotenoids, and total phenolics. As sorbitol concentrations increased, chlorophyll a and chlorophyll b values increased in the samples taken during the fruiting period and higher values were obtained. The carotenoid content increased by approximately 189.49% and the total phenolic content increased by 30.85% in strawberry plants treated with sorbitol compared with the control. Supply of sorbitol decreased flavonoid content. The results indicate that sorbitol treatment has no inhibitory influence on the overall growth of strawberries. Among the biochemical parameters analyzed, chlorophyll, phenolic, and carotenoid contents increased, whereas flavonoid content decreased with sorbitol application.
Referanslar
Aaby, K., Skrede, G., & Wrolstad, R.E. (2005). Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa). J Agric Food Chem.53:4032–40. DOI: 10.1021/jf048001o
Açıkgöz, M. A. (2021). Effects of sorbitol on the production of phenolic compounds and terpenoids in the cell suspension cultures of Ocimum basilicum L. Biologia, 76(1), 395-409. DOI: 10.2478/s11756-020-00581-0
Al-Taee, R. W. M., & Al-Shammari, M. F. M. (2022). Effect of spraying with organic fertilizer and sorbitol sugar on growth and yield of cabbage. Int. J. of Aquatic Science, 13(1), 362-367.
Awan, S.A., Khan, I., Rizwan, M., Zhang, X., Brestic, M., Khan, A., El-Sheikh, M.A., Alyemeni, M.N., Ali, S., & Huang, L. (2021). Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol-induced drought by improving the growth and antioxidative enzyme activities in pearl millet. Physiol. Plant. 172, 809–819. DOI: 10.1111/ppl.13247
Ay, E. B., Gül, M., Açikgöz, M. A., Yarilgaç, T., & Kara, Ş. M. (2018). Assessment of antioxidant activity of giant snowdrop (Galanthus elwesii Hook) extracts with their total phenol and flavonoid contents. Indian journal of pharmaceutical education and research, 52(4), 128-132.
Buricova, L., Andjelkovic, M., Cermakova, A., Réblová, Z., Jurcek, O., Kolehmainen, E., ... & Kvasnicka, F. (2011). Antioxidant capacities and antioxidants of strawberry, blackberry and raspberry leaves. Czech Journal of Food Sciences.
Caliskan, S., & Caliskan, M. E. (2018). Row and plant spacing effects on the yield and yield components of safflower in a mediterranean-type environment. Turk. J. Field Crops, 23(2), 85-92.
Demmig-Adams B., & Adams, III W.W. (1992). Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Phys. 43: 599-626, 1992. DOI: 10.1146/annurev.pp.43.060192.003123
Demmig‐Adams, B., Gilmore, A. M., & Iii, W. W. A. (1996). In vivo functions of carotenoids in higher plants. The FASEB journal, 10(4), 403-412. DOI: 10.1096/fasebj.10.4.8647339
Dilek, A., Ay, E.B., Açıkgöz, M.A., & Kocaman, B. (2022). The effect of sorbitol applications on total phenolic, flavonoid amount, and antioxidant activity in Safflower (Carthamus tinctorius L.). International Journal of Agriculture Environment and Food Sciences, 6(4), 614-621. DOI: 10.31015/jaefs.2022.4.15
Dixon, R. A. & N. L. Paiva 1995. Stress-induced phenylpropanoid metabolism. Plant Cell, 7: 1085-1097. DOI: 10.1105/tpc.7.7.1085
Doğançay, G. (2013). Sulanan ve sulanmayan koşullarda bazı zeytin çeşitlerinin yapraklarındaki biyoaktif bileşiklerin mevsimsel değişimi (Doctoral dissertation, Yüksek Lisans Tezi, Yedi Aralık Üniversitesi, Fen bilimleri Enstitüsü, Kilis).
El Far, M. M., & Taie, H. A. (2009). Antioxidant activities, total anthocyanins, phenolics and flavonoids contents of some sweetpotato genotypes under stress of different concentrations of sucrose and sorbitol. Australian Journal of Basic and Applied Sciences, 3(4), 3609-3616.
Elbatrawy, W. S., Walaa, S., Yousif, E. E., & Ghannam, H. A. (2023). Effect of sorbitol and boron on the growth and seed quality of faba bean (Vicia faba L.). Egyptian Journal of Agricultural Research, 101(2), 538-551. DOI: 10.21608/ejar.2023.191974.1337
FAO. 2023. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 February 2023).
Gao, M., Tao, R., Miura, K., Dandekar, A.M., & Sugiura, A. (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6- phosphate dehydrogenase. Plant Science 160, 837-845. DOI: 10.1016/s0168-9452(00)00458-1
Gargın, S. (2011). Bağcılıkta kullanılan farklı Amerikan asma anaçlarının yaprak klorofil yoğunluklarının (SPAD) belirlenmesi. Uluslararası Katılımlı, 1, 27-30.
Giamperi, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J.L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality and impact on human health. Nutrition. 28: 9–19. DOI: 10.1016/j.nut.2011.08.009
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology, 160(3), 271-282.
Grace, S. C. & Logan, B.A. (2000). Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Phil. Trans. Royal Soc. B, 355: 1499-1510.
https://doi.org/10.3390/horticulturae9091041
Humaira, G., Maria, F., Anwar, H., Lubna, M. I., & Muhammad, A. (2017). Exogenously applied sorbitol alleviates the salt stress by improving some biochemical parameters in spinach (Spinacia oleracea L.). International journal of biology and biotechnology, 14(4), 677-686.
Issa, D. B., Alturki, S. M., Sajyan, T. K., & Sassine, Y. N. (2020). Sorbitol and lithovit-guano25 mitigates the adverse effects of salinity on eggplant grown in pot experiment. Agronomy Research 18(1):113–126.
Jain, M., Tiwary, S., & Bapna, R. S. (2021). Biochemical parameters affected by sorbitol induced osmotic stress in Zea mays Ganga Safed-2 leaves. International Journal of Phytology Research, 1(2), 05-10.
Jain, M., Tiwary, S., & Gadre, R. (2010). Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant, Soil and Environment, 56(6), 263-267.
Jin, X., Liu, T., Xu, J., Gao, Z., & Hu, X. (2019). Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC plant biology, 19, 1-15.
Khaliq, M., Nawaz, K., Hussain, K., Javeria, M., Iqbal, I., Arshad, N., ... & Qurban, M. O. H. A. M. M. A. D. (2023). Foliar application of sorbitol is a shotgun approach to alleviate the adverse effects of salinity stress on two varieties of wheat (Triticum aestivum L.). Pak J Bot, 55, 1243-56.
Khazaei, Z., & Estaji, A. (2020). Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiol. Plant. 42, 661–666.
Kırgeç, Y., Batı-Ay, E., & Açıkgöz, M.A. (2023). The effects of foliar salicylic acid and zinc treatments on proline, carotenoid, and chlorophyll content and antioxidant enzyme activity in Galanthus elwesii Hook. Horticulturae. 9, 1041.
Kizil, S., Çakmak, Ö., Kirici, S. A. L. İ. H. A., & İnan, M. (2008). A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnology & Biotechnological Equipment, 22(4), 947-953.
Koponen, J.M., Happonen, A.M., Mattila, P.H., & Törrönen, A.R. (2007). Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem. 55: :1612–9.
Kurtulmuş, H. (2016). Edremit Körfezi zeytin yapraklarının antioksidan özellikleri ile fenolik ve mineral bileşimleri üzerine mevsim ve yükselti faktörlerinin etkileri (Master's thesis, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü).
Lauria, G., Lo Piccolo, E., Pellegrini, E., Bellini, E., Giordani, T., Guidi, L., ... & Landi, M. (2021). Photosynthetic traits and biochemical responses in strawberry (Fragaria× ananassa Duch.) leaves supplemented with LED lights. Photosynthetica, 59(4), 557-569.
Lee, D. S., Kim, K. H., & Yook, H. S. (2018). Antioxidant effects of fractional extracts from strawberry (Fragaria ananassa var.‘Seolhyang’) leaves.
Li, J., Zhao, M., Liu, L., Guo, X., Pei, Y., Wang, C., & Song, X. (2023). Exogenous sorbitol application confers drought tolerance to maize seedlings through up-regulating antioxidant system and endogenous sorbitol biosynthesis. Plants, 12(13), 2456.
Li, P., Geng, C., Li, L., Li, Y., Li, T., Wei, Q., & Yan, D. (2020). Calcium-sorbitol chelating technology and application in potatoes. Am Journal of Biochemistry Biotechnology, 16; 96-102.
Michalska, A., Carlen, C., Heritier, J., & Andlauer, W. (2017). Profiles of bioactive compounds in fruits and leaves of strawberry cultivars. Journal of Berry Research, 7(2), 71-84.
Mohammadi, M., & Tavakoli, A. (2015). Effect of harvest time of spring safflower (Carthamus tinctorius L.) florets on the production of red and yellow pigments. Quality Assurance and Safety of Crops & Foods, 7(5), 581-588.
Muthukumaran, S., Tranchant, C., Shi, J., Ye, X., & Xue, S. J. (2017). Ellagic acid in strawberry (Fragaria spp.): Biological, technological, stability, and human health aspects. Food Quality and Safety, 1(4), 227-252.
Nile, S.H., & Park, S.W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30: :134–44.
Noiraud, N., Maurousset, L., & Lemoine, R. (2001). Transport of polyols in higher plants. Plant Physiology and Biochemistry, 39(9), 717-728.
Oğuz, M. S. İ. (2021). An Overview of Strawberry (Fragaria Spp.) cultivation in Turkey and in the world. Current Studies on Fruit Science, 3.
Özeker, E., & Tanrısever, A. (1999). Investigations on the changes of phenolic substances during flower bud development in strawberries. Turkish Journal of Agriculture and Forestry, 23(7), 97-106.
Park, Y.S., Jung, S.T., Kang, S.G., Heo, B.K., Arancibia-Avila, P., Toledo, F., Drzewiecki, J., Namiesnik, J., & Gorinstein, S. (2008). Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 107:640–648. doi: 10.1016/j.foodchem.2007.08.070.
Penna, S., Teixeira da Silva, J. A., & Anant, B. V. (2006). Plant abiotic stress, sugars and transgenics: a perspective. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical, 3, 86-93.
Porro, D., Bertamini, M., Dorigatti, C., Stefanini, M., & Ceschini, A. (2001). SPAD for the diagnosis of the nutritional status of vine.
Pradas, I., Medina, J.J., Ortiz, V., & Moreno-Rojas, J,M (2015). Fuentepina and Amiga, two new strawberry cultivars: Evaluation of genotype, ripening and seasonal effects on quality characteristics and health-promoting compounds. J Berry Res., 5: (3):157–71.
Raudoniūtė, I., Rovira, J., Venskutonis, P. R., Damašius, J., Rivero‐Pérez, M. D., & González‐SanJosé, M. L. (2011). Antioxidant properties of garden strawberry leaf extract and its effect on fish oil oxidation. International Journal of Food Science & Technology, 46(5), 935-943.
Rezaei, Z., Sarmast, M.K. & Atashi, S. (2020). 6-Benzylaminopurine (6-BA) ameliorates drought stress response in tall fescue via the influencing of biochemicals and strigolactone-signaling genes. Plant Physiol. Biochem. 155, 877–887.
Salem, N., Msaada, K., Hamdaoui, G., Limam, F., & Marzouk, B. (2011). Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). Journal of Agricultural and Food Chemistry, 59(9), 4455-4463.
Sato, T., Ikeya, Y., Adachi, S. I., Yagasaki, K., Nihei, K. I., & Itoh, N. (2019). Extraction of strawberry leaves with supercritical carbon dioxide and entrainers: Antioxidant capacity, total phenolic content, and inhibitory effect on uric acid production of the extract. Food and bioproducts processing, 117, 160-169.
Sharma, J.K., Sihmar, M., Santal, A.R., & Singh, N.P. (2019). Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: A current update. Biotechnol. Genet. Eng. Rev., 35, 126–160.
Silva, A. P., Rodrigues, B., Bonny, L., & Manrique, Y. (2022). Strawberry Leaves Extract for Cosmetic Industry. U. Porto Journal of Engineering, 8(5), 135-144.
Simirgiotis, M.J., & Schmeda-Hirschmann, G. (2010). Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J Food Comp Anal., 23, 545–53.
Singh, S., Saxena, R., Pandey, K., Bhatt, K., & Sinha, S. (2004). Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere, 57(11), 1663-1673.
Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 28(1), 49-55.
Steberl, K., Hartung, J., Munz, S., & Graeff-Hönninger, S. (2020). Effect of row spacing, sowing density, and harvest time on floret yield and yield components of two safflower cultivars grown in southwestern Germany. Agronomy, 10(5), 664.
Tayyab, N., Naz, R., Yasmin, H., Nosheen, A., Keyani, R., Sajjad, M., Hassan, M.N., & Roberts, T.H. (2020). Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS ONE, 15, e0232269.
Teo, G., Suzuki, Y., Uratsu, S. L., Lampinen, B., Ormonde, N., Hu, W. K., ... & Dandekar, A. M. (2006). Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proceedings of the National Academy of Sciences, 103(49), 18842-18847.
Theerakulpisut, P., & Gunnula, W. (2012). Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt-tolerant rice seedlings. Asian. J. Crop Sci., (4)165–170.
Uzal, Ö., & Yıldız, K. (2013). Tuz stresi altındaki bazı çilek çeşitlerinin bitki gelişimleri, klorofil içerikleri ve mikro besin maddelerindeki değişmeler. Yüzüncü Yıl University Journal of Agricultural Sciences (Turkey), 23(2).
Viršilė, A., Brazaitytė, A., Jankauskienė, J., Miliauskienė, J., Vaštakaitė, V., Odminytė, I., ... & Samuolienė, G. (2018). Pre-harvest LED lighting strategies for reduced nitrate contents in leafy vegetables. Zemdirbyste-Agriculture, 105(3).
Wang, S.Y., & Lin, H.S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem., 48, 140–6.
Witham, F.H.; Blaydes, D.F.; & Devlin, R.M. (1971). Experiments in Plant Physiology; Van Nostrend Reinhold Company: New York, NY, USA.
Zhou, R., Cheng, L., & Dandekar, A. M. (2006). Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. Journal of experimental botany, 57(14), 3647-3657.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.