Kırıkkale Delice İlçesi Yerel Üzüm Popülasyonun Bazı Morfolojik Özellikleri
DOI:
https://doi.org/10.24925/turjaf.v12i11.1914-1921.6997Anahtar Kelimeler:
Genetik Çeşitlilik- Sürdürülebilir Tarım- Delice Üzümü- Vitis vinifera- KırıkkaleÖzet
Bu çalışma, Kırıkkale’nin Delice ilçesine özgü yerel bir üzüm popülasyon olan “Delice Üzümü”nün morfolojik ve kimyasal özelliklerini detaylı bir şekilde incelemeyi amaçlamaktadır. Araştırma kapsamında, Delice Üzümü’nün salkım büyüklüğü, tane şekli, kabuk rengi ve kalınlığı gibi morfolojik özellikleri laboratuvar ve saha çalışmaları ile belirlenmiştir. Ayrıca, üzümün kimyasal bileşimi, suda çözünür kuru madde (SÇKM) oranı, pH değeri, tartarik asit miktarı ve şıra randımanı gibi parametreler üzerinden değerlendirilmiştir. Elde edilen sonuçlar, Delice Üzümü’nün yüksek kaliteli bir üzüm popülasyonu olduğunu göstermektedir. Morfolojik incelemelerde, salkımların orta büyüklükte ve sıklıkta, tanelerin ise yumurta şeklinde ve tatlı olduğu belirlenmiştir. Kimyasal analiz sonuçları, SÇKM oranının %24-25, pH değerinin 3.7, tartarik asit miktarının 0.416 g/L ve şıra randımanının 500-550 ml olduğunu ortaya koymuştur. Bu bulgular, Delice Üzümü’nün hem sofralık tüketim hem de pekmez ve pestil gibi yöresel ürünlerin yapımında kullanılabilirliğini desteklemektedir. Çalışma, aynı zamanda Delice ilçesinin ekolojik ve toprak özelliklerinin üzüm yetiştiriciliği için uygun olduğunu, bu nedenle yerel çeşitlerin korunması ve geliştirilmesinin genetik çeşitlilik ve biyolojik çeşitliliğin sürdürülmesi açısından kritik önem taşıdığını vurgulamaktadır. Bu çalışma, yerel üzüm çeşitlerinin tarımsal ve ekonomik potansiyelini ortaya koyarak, gelecekteki araştırmalara ve sürdürülebilir tarım uygulamalarına katkıda bulunmayı hedeflemektedir.
Referanslar
Akbulut, N. E., & Tuncer, A. M. (2011). Accumulation of heavy metals with water quality parameters in Kızılırmak River Basin (Delice River) in Turkey. Environmental monitoring and assessment, 173, 387-395. https://doi.org/10.1007/s10661-010-1394-7
Akdemir, U., & Candar, S. (2022). Regional economics of viticulture in Turkiye in the period 1970. Research-Review, 2(2), 55-71. https://doi.org/10.52001/vis.2022.11.55.71
Alba, V., Bergamini, C., Cardone, M. F., Gasparro, M., Perniola, R., Genghi, R., & Antonacci, D. (2014). Morphological variability in leaves and molecular characterization of novel table grape candidate cultivars (Vitis vinifera L.). Molecular biotechnology, 56(6), 557–570. . https://doi.org/10.1007/s12033-013-9729-6
Allison, L., & Moodie, C. (1965). Carbonate. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1379-1396. https://doi.org/10.2134/agronmonogr9.2.c40
Ardenghi, N. M., Galasso, G., Banfi, E., Zoccola, A., Foggi, B., & Lastrucci, L. (2014). A taxonomic survey of the genus Vitis L.(Vitaceae) in Italy, with special reference to Elba Island (Tuscan Archipelago). Phytotaxa, 166(3), 163–198-163–198. https://doi.org/10.11646/phytotaxa.166.3.1
Caffarra, A., & Eccel, E. (2011). Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Australian Journal of Grape and Wine Research, 17(1), 52-61. https://doi.org/ https://doi.org/10.1111/j.1755-0238.2010.00118.x
Cangi, R., Bilget, K., & Altıncı, N. T. (2017). Tokat koşullarında farklı fidan tipi ve dikim zamanlarının asma fidanlarının gelişmesi üzerine etkileri. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 1(1), 8-16.
Cardone, M. F., D’Addabbo, P., Alkan, C., Bergamini, C., Catacchio, C. R., Anaclerio, F., Chiatante, G., Marra, A., Giannuzzi, G., & Perniola, R. (2016). Inter‐varietal structural variation in grapevine genomes. The Plant Journal, 88(4), 648-661. https://doi.org/ https://doi.org/10.1111/tpj.13274
Cervantes, E., Martín-Gómez, J. J., Espinosa-Roldán, F. E., Muñoz-Organero, G., Tocino, Á., & Cabello-Saenz de Santamaria, F. (2021). Seed morphology in key Spanish grapevine cultivars. Agronomy, 11(4), 734. https://doi.org/ https://doi.org/10.3390/agronomy11040734
Dallakyan, M., Esoyan, S., Gasparyan, B., Smith, A., & Hovhannisyan, N. (2020). Genetic diversity and traditional uses of aboriginal grape (Vitis vinifera L.) varieties from the main viticultural regions of Armenia. Genetic Resources and Crop Evolution, 67(4), 999-1024. https://doi.org/https://doi.org/10.1007/s10722-020-00897-5(0123456789().,-volV)( 01234567
Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., Myles, S., Martinez-Zapater, J. M., Zyprian, E., & Moreira, F. M. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13, 1-17. https://doi.org/https://doi.org/10.1186/1471-2229-13-39
Fongaro, C., Cavagnolli, N. I., & Dalla Santa Spada, P. K. W. (2016). Evaluation of physicochemical parameters of grape juices produced in the Serra Gaúcha. BIO Web of Conferences,
Gonçalves, E., & Martins, A. (2022). Optimizing conservation and evaluation of intravarietal grapevine diversity. In Improving Sustainable Viticulture and Winemaking Practices (pp. 45-64). Elsevier. https://doi.org/10.1016/B978-0-323-85150-3.00020-7
Güler, A., & Candemir, A. (2020). Determination of physicochemical characteristics, organic acid and sugar profiles of Turkish grape juices. International Journal of Agriculture Environment and Food Sciences, 4(2), 149-156. https://doi.org/10.31015/jaefs.2020.2.4
Jackson, M. (1958). Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ, 498(1958), 183-204.
Liu, H. F., Wu, B. H., Fan, P. G., Li, S. H., & Li, L. S. (2006). Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. Journal of the Science of Food and Agriculture, 86(10), 1526-1536. https://doi.org/ https://doi.org/10.1002/jsfa.2541
Maras, V., Tello, J., Gazivoda, A., Mugoša, M., Perišić, M., Raičević, J., Štajner, N., Ocete, R., Božović, V., & Popović, T. (2020). Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in Vitis vinifera. Scientific reports, 10(1), 15000. https://doi.org/10.1038/s41598-020-71918-7
Migicovsky, Z., Sawler, J., Gardner, K. M., Aradhya, M. K., Prins, B. H., Schwaninger, H. R., Bustamante, C. D., Buckler, E. S., Zhong, G.-Y., & Brown, P. J. (2017). Patterns of genomic and phenomic diversity in wine and table grapes. Horticulture research, 4. https://doi.org/https://doi.org/10.1038/hortres.2017.35
Muñoz-Robredo, P., Robledo, P., Manríquez, D., Molina, R., & Defilippi, B. G. (2011). Characterization of sugars and organic acids in commercial varieties of table grapes. Chilean journal of agricultural research, 71(3), 452.
Müller, K., Keller, M., Stoll, M., & Friedel, M. (2023). Wind speed, sun exposure and water status alter sunburn susceptibility of grape berries. Frontiers in plant science, 14, 1145274. https://doi.org/https://doi.org/10.3389/fpls.2023.1145274
Mylavarapu, R. (2009). UF/IFAS Extension Soil Testing Laboratory (ESTL) Analytical Procedures and Training Manual: CIR1248/SS312, rev. 2/2009. EDIS, 2009(2), 14-14. https://doi.org/ http://doi.org/10.32473/edis-ss312-2009
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 539-579. https://doi.org/https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture.
Pelsy, F., Hocquigny, S., Moncada, X., Barbeau, G., Forget, D., Hinrichsen, P., & Merdinoglu, D. (2010). An extensive study of the genetic diversity within seven French wine grape variety collections. Theoretical and Applied Genetics, 120(6), 1219-1231. https://doi.org/DOI 10.1007/s00122-009-1250-8
Prathiksha, G., & Hegde, K. (2022). A Review on Vitis vinifera L.: The Grape. Department of Pharmacology, Srinivas College of Pharmacy, Valachil, Mangalore, Karnataka, India, 574143, Pages: 142-145. https://doi.org/10.47583/ijpsrr.2022.v74i01.023
Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods, 5, 417-435. https://doi.org/ https://doi.org/10.2136/sssabookser5.3.c14
Rolle, L., Giacosa, S., Gerbi, V., & Novello, V. (2011). Comparative study of texture properties, color characteristics, and chemical composition of ten white table-grape varieties. American Journal of Enology and Viticulture, 62(1), 49-56. https://doi.org/10.5344/ajev.2010.10029
Sabır, A., Tangolar, S., Büyükalaca, S., & Kafkas, S. (2009). Ampelographic and molecular diversity among grapevine (Vitis spp.) cultivars. Czech Journal of Genetics and Plant Breeding, 45(4). https://doi.org/10.17221/72/2008-CJGPB
Sancho-Galán, P., Amores-Arrocha, A., Palacios, V., & Jiménez-Cantizano, A. (2020). Identification and characterization of white grape varieties autochthonous of a warm climate region (Andalusia, Spain). Agronomy, 10(2), 205. https://doi.org/https://doi.org/10.3390/agronomy10020205
Serratosa, M. P., Marquez, A., Moyano, L., Zea, L., & Merida, J. (2014). Chemical and morphological characterization of Chardonnay and Gewürztraminer grapes and changes during chamber-drying under controlled conditions. Food chemistry, 159, 128-136. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.02.167
Shah, N., Cynkar, W., Smith, P., & Cozzolino, D. (2010). Use of attenuated total reflectance midinfrared for rapid and real-time analysis of compositional parameters in commercial white grape juice. Journal of agricultural and food chemistry, 58(6), 3279-3283. https://doi.org/10.1021/jf100420z
Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: Part 3 Chemical methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
Tomić, L., Štajner, N., & Javornik, B. (2013). Characterization of grapevines by the use of genetic markers. The Mediterranean genetic code-grapevine and olive, 1-25. https://doi.org/10.5772/52833.
Ünal, M. S., & Ucaş, C. (2022). Midyat (Mardin) ilçesi yerel üzüm çeşitlerinin salkım, tane, çekirdek ve çubuk özellikleri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 125-135. https://doi.org/10.1007/s10661-010-1394-7
Vafaee, Y., Ghaderi, N., & Khadivi, A. (2017). Morphological variation and marker-fruit trait associations in a collection of grape (Vitis vinifera L.). Scientia Horticulturae, 225, 771-782. https://doi.org/10.1016/j.scienta.2017.08.007
Venios, X., Korkas, E., Nisiotou, A., & Banilas, G. (2020). Grapevine responses to heat stress and global warming. Plants, 9(12), 1754. https://doi.org/10.3390/plants9121754
Wan, Y., Schwaninger, H. R., Baldo, A. M., Labate, J. A., Zhong, G.-Y., & Simon, C. J. (2013). A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC evolutionary biology, 13, 1-20. https://doi.org/10.1186/1471-2148-13-141
Wu, D., He, Y., Nie, P., Cao, F., & Bao, Y. (2010). Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice. Analytica chimica acta, 659(1-2), 229-237. https://doi.org/10.1016/j.aca.2009.11.045
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.