In-vitro Antimicrobial Activity of ZnO Nanoparticles Produced by Hydrothermal Method Against Some Foodborne Pathogens
DOI:
https://doi.org/10.24925/turjaf.v12is2.2266-2271.7002Anahtar Kelimeler:
ZnO- Nanoparticle- antimicrobial activity- food borne pathogens- CharacterizationÖzet
Referanslar
Adeyemi, J. O., & Fawole, O. A. (2023). Metal-based nanoparticles in food packaging and coating technologies: A review. Biomolecules, 13(7), 1092. https://doi.org/10.3390/biom13071092
Akbar, A., Sadiq, M. B., Ali, I., Muhammad, N., Rehman, Z., Khang, M. N., Muhammad, J., Khan, S. A., Rehman, F. U., Anal, A. K. (2019). Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella Typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology, 17, 36–42. https://doi.org/10.1016/j.bcab.2018.11.005
Alizadeh-Sani, M., Hamishehkar, H., Khezerlou, A., Maleki, M., Azizi- Lalabadi, M., Bagheri, V., Safaei, P., Azimi, T., Hashemi, M., & Ehsani, A. (2020). Kinetics Analysis and Susceptibility Coefficient of the PathogenicBacteria by Titanium Dioxide and Zinc Oxide Nanoparticles. Advanced Pharmaceutical Bulletin, 10(1), 56-64. doi: 10.15171/apb.2020.007 https://apb.tbzmed.ac.ir
AlSalhi, M. S., Devanesan, S., Atif, M., AlQahtani, W. S., Nicoletti, M., & Serrone, P. D. (2020). Therapeutic Potential Assessment of Green Synthesized Zinc Oxide Nanoparticles Derived from Fennel Seeds Extract. International Journal of Nanomedicine, 15, 8045–8057. http://doi.org/10.2147/IJN.S272734
AL-Tamimi, B. Y. H. (2021). Green synthesis of zinc and nickel oxides nanoparticles and study of their biological applications [Master's thesis, University of Anbar ].
Arayesh, M. A., Kianfar, A. H., & Mohammadnezhad, G. (2023). Synthesis of Fe3O4/ZrO2/ZnO nanoparticle for enhancing visible light photocatalytic and antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers, 153, 105213. https://doi.org/10.1016/j.jtice.2023.105213
Ba-Abbad, M. M., Takriff, M. S., Benamor, A., Mahmoudi, E., & Mohammad, A.W. (2017). Arabic gum as green agent for ZnO nanoparticles synthesis: properties, mechanism and antibacterial activity. Journal of Materials Science: Materials in Electronics, 28, 12100–12107. https://doi.org/10.1007/s10854-017-7023-2.
Berekaa, M. M. (2015). Nanotechnology in food industry; advances in food processing, packaging and food safety. International Journal of Current Microbiology and Applied Sciences, 4(5), 345–357. https://www.researchgate.net/publication/306017224
Clinical and Laboratory Standars Institue. (2017). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals. Approved Standard M31-A3; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2017; online: https://www.dbt.univr.it/documenti/OccorrenzaIns/matdid/matdid485539.pdf
Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering, 97, 954-965. https://doi.org/10.1016/j.msec.2018.12.102
de Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi1, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36, 885 - 893, dx.doi.org/10.1590/0104-6632.20190362s20180027
Donmez, S., & Keyvan, E. (2023). Green synthesis of zinc oxide nanoparticles using grape seed extract and evaluation of their antibacterial and antioxidant activities. Inorganic and Nano-Metal Chemistry, https://doi.org/10.1080/24701556.2023.2165687
Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K., & Reddy, A. V. R. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids and Surfaces B: Biointerfaces, 94,143–50. https://doi.org/10.1016/j.colsurfb.2012.01.046.
EFSA & ECDC (European Food Safety Authority and European Centre for Disease
Prevention and Control), (2022). The European Union one health 2021 zoonoses
report. EFSA Journal, 20(12), 7666. https://doi.org/10.2903/j.efsa.2022.7666
El‑Fallal, A. A., Elfayoumy, R. A., & El‑Zahed, M. M. (2023). Antibacterial activity of biosynthesized zinc oxide nanoparticles using Kombucha extract. SN Applied Sciences, 5, 332. https://doi.org/10.1007/s42452-023-05546-x
Erol, I., Al-Sehemi, A. G., Tataroğlu, A., Dere, A., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2022). Hydrothermal Synthesis of ZnO-Doped Poly-2-(4-Fluorophenyl)-2-Oxoethyl-2-Methylprop-2-Enoate Nanocomposites for Electronic Devices. Journal of Macromolecular Science, Part B Physics, 61, 7–8, 958–970. https://doi.org/10.1080/00222348.2022.2122310
Gupta, R. K., Gawad, F. A. E., Ali, E. A. E., Karunanithi, S., Puput Yugiani , P., & Srivastav, P. P. (2024). Nanotechnology: Current applications and future scope in food packaging systems. Measurement: Food 13, 100131. https://doi.org/10.1016/j.meafoo.2023.100131
Gur, T., Meydan, I., Seckin, H., Bekmezci, M., & Sen, F. (2022). Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research, 204, 111897. https://doi.org/10.1016/j.envres.2021.111897
Hamk, M., Akçay, F.A., & Avcı, A. (2023). Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Preparative Biochemistry & Biotechnology, 53,3, 255–264 https://doi.org/10.1080/10826068.2022.2076243
He, X., Deng, H., & Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. Journal of food and drug analysis, 27(1), 1-21. https://doi.org/10.1016/j.jfda.2018.12.002
Jamdagni, P., Khatri, P., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor – tristis and their antifungal activity. Journal of King Saud University – Science, 30, 168–175. https://doi.org/10.1016/j.jksus.2016.10.002
Karakaplan, M. B. (2021). Investigating the Growth Kinetics of Gram-positive and Gram-negative Bacteria in the Presence of Zinc Oxide Nanoparticles and Curcumin. (Publication No. 688550) [Master's thesis, İzmir Kâtip Çelebi University ].
Kevenk, T. O., & Aras, Z. (2022). Decontamination Effect of Zinc Oxide Nanoparticles, Rosmarinic Acid and Anatolian Propolis on Foodborne Bacteria. Turkish Journal of Agriculture - Food Science and Technology, 10(2), 313-318. https://doi.org/10.24925/turjaf.v10i2.313-318.4889
Leta, T. B., Adeyemi, J. O., & Fawole, O. A. (2024). Utilizing fruit waste-mediated nanoparticles for sustainable food packaging materials to combat food loss and waste. Food Bioscience, 59, 104151. https://doi.org/10.1016/j.fbio.2024.104151
Moradi, M., Tajik, H., Mardani, K., & Ezati, P. (2019). Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef. Veterinary Research Forum, 10(3), 193–198.
Nandhini, J., Karthikeyan, E., & Rajeshkumar, S. (2024). "Green Synthesis of Zinc Oxide Nanoparticles: Eco-Friendly Advancements for Biomedical Marvels". Resources Chemicals and Materials. Journal Pre- proof. https://doi.org/10.1016/j.recm.2024.05.001
Nawaz, A., Farhan , A., Maqbool, F., Ahmad, H., Qayyum, W., Ghazy, E., Rahdar, A., Díez-Pascual, A. M., & Fathi-karkan, S. (2024). Zinc oxide nanoparticles: Pathways to micropollutant adsorption, dye removal, and antibacterial actions - A study of mechanisms, challenges, and future prospects. Journal of Molecular Structure, 1312, 138545. https://doi.org/10.1016/j.molstruc.2024.138545
Pauzi, N., Zain, N. M., Kutty, R. V., & Ramli, H. (2021). Antibacterial and antibiofilm properties of ZnO nanoparticles synthesis using gum arabic as a potential new generation antibacterial agent. Materials Today: Proceedings, 41, 1–8. https://doi.org/10.1016/j.matpr.2020.06.359
Phatak, K. A., Khanna, P. K., & Nath, B. B. (2024). ZnO nanoparticles: A key ingredient of sunscreen shows absence of adverse effects on Drosophila melanization pathway. Nano-Structures & Nano-Objects, 38, 101145. https://doi.org/10.1016/j.nanoso.2024.101145
Priyadarshi, R., Kim, S. M., & Rhim, J-W. (2021). Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustainable Materials and Technologies, 29, e00325. https://doi.org/10.1016/j.susmat.2021.e00325
Rout, S. S., & Pradhan, K. C. (2024). Food Control, 163,110470. https://doi.org/10.1016/j.foodcont.2024.110470
Roy, S., Kim, H. C., Panicker, P. S., Rhim, J. W., & Kim, J. (2021). Cellulose nanofiber-based nanocomposite films reinforced with zinc oxide nanorods and grapefruit seed extract, Nanomaterials, 11, 877, https://doi.org/10.3390/nano11040877.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.