Genetic Insights into Poaceae Forages: A Review of Current Marker Studies

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i10.2003-2008.6048

Keywords:

Markers,, forages,, Poaceae

Abstract

Forage variety development for diversified environmental conditions may benefit from the use of genomic-based breeding procedures. In today's conditions, molecular markers are used by researchers in this field to track loci and genome regions in crop breeding studies. Although earlier characterization efforts yielded useful information, morphological traits and RAPD markers have limitations when used together for genetic diversity research. Different combinations of methodologies are required for diversified aims to study different forage species at the genetic level and to connect micro level traitsto macro level traits.

References

Amini F, Mirlohi AF, Majidi MM. 2018. The Possibility of Use of AFLP Molecular Markers an d Phenotypic Traits to Increase Forage Yield in Tall Fescue (Festuca arundinacea Schreb.) Breeding.

Bartoš J, Sandve SR, Kölliker R, Kopecký D, Christelová P, Stočes Š, DoleželJ. 2011. Genetic mapping of DArT markers in the Festuca–Lolium complex and their use in freezing tolerance association analysis. Theoretical and Applied Genetics, 122(6), 1133-1147.

Bushman BS, Joshi A, Johnson PG. 2018. Molecular Markers Improve Breeding Efficiency in Apomictic Poa Pratensis L. Agronomy, 8 (2), 17.

Chen S, Huang Z, Dai Y, Qin S, Gao Y, Zhang L, Chen J. 2013. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One, 8(6), e65122.

Cheng Y, Ma X, Zhou K, Humphreys MW, Zhang, XQ. 2016. Phylogenetic analysis of Festuca–Lolium complex using SRAP markers. Genetic Resources and Crop Evolution, 63(1), 7-18.

Costa R, Pereira G, Garrido I, Tavares-de-Sousa MM, Espinosa F. 2016. Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PloS one, 11(4), e0152972.

Crews TE. 2016. Closing the Gap between Grasslands and Grain Agriculture. Kan. JL & Pub. Pol'y, 26, 274.

de Souza ÁN, Ângelo H, Joaquim MS, de Souza SN, Belknap JE. 2012. Economic Feasibility of an Eucalyptus Agroforestry System in Brazil. Global Perspectives on Sustainable Forest Management (CA Okia, Eds.), In Tech Publisher, Janeza Trdine, 9(51000), 95-106.

Guo J, Yu X, Yin H, Liu G, Li A, Wang H, Kong L. 2016. Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Systematics and Evolution, 302(9), 1301-1309.

Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M. 2012. Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant cell reports, 31(2), 323-337.

Habte E, Muktar MS, Abdena A, Hanson J, Sartie AM, Negawo AT, Jones

CS 2020. Forage performance and detection of marker trait associations with potential for Napier grass (Cenchrus purpureus) improvement. Agronomy, 10(4), 542.

Hayashi K, Hashimoto N, Daigen M, Ashikawa I. 2004. Development of PCR- based SNP markers for rice blast resistance genes at the Piz locus. Theoretical and Applied Genetics, 108(7), 1212-1220.

Honig JA, Averello V, Bonos SA, Meyer WA. 2012. Classification of Kentucky bluegrass (Poa pratensis L.) cultivars and accessions based on microsatellite (simple sequence repeat) markers. HortScience, 47(9), 1356-1366.

Honig JA, Bonos SA, Meyer WA. 2010. Isolation and characterization of 88 polymorphic microsatellite markers in Kentucky bluegrass (Poa pratensis L.). HortScience, 45(11), 1759-1763.

Hu L, Li G, Zhan H, Liu C, Yang Z. 2012a. New St-chromosome-specific molecular markers for identifying wheat–Thinopyrum intermedium derivative lines. Journal of genetics, 1-6.

Hu LJ, Liu C, Zeng ZX, Li GR, Song XJ, Yang ZJ. 2012b. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes & Genomics, 34(1), 67-75.

Huang LK, Yan HD, Zhao XX, Zhang XQ, Wang J, Frazier T, Liu W. 2015. Identifying differentially expressed genes under heat stress and developing molecular markers in orchardgrass (Dactylis glomerata L.) through transcriptome analysis. Molecular ecology resources, 15(6), 1497-1509.

Jun WANG, Wang ZL, Yang HQ, Feng YUAN, Guo EH, Gang TIAN, Guo PY. 2013. Genetic analysis and preliminary mapping of a highly male-sterile gene in foxtail millet (Setaria italica L. Beauv.) using SSR markers. Journal of Integrative Agriculture, 12(12), 2143-2148.

Kim EJ, Sa KJ, Park KC, Lee JK. 2012. Study of genetic diversity and relationships among accessions of foxtail millet [Setaria italica (L.) P. Beauv.] in Korea, China, and Pakistan using SSR markers. Genes & Genomics, 34(5), 529-538.

Krishna TA, MaharajanT, David RHA, Ramakrishnan M, Ceasar SA, Duraipandiyan V, Ignacimuthu S. 2018. Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. Biocatalysis and agricultural biotechnology, 16, 493-501.

Liu L, Luo Q, Teng W, Li B, Li H, Li Y, Zheng Q. 2018a. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta, 247(5), 1099-1108.

Liu L, Luo Q, Li H, Li B, Li Z, Zheng Q. 2018b. Physical mapping of the blue- grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain- related molecular markers and a FISH probe based on SLAF-seq technology. Theoretical and Applied Genetics, 131(11), 2359-2370.

Lou Y, Hu L, Chen L, Sun X, Yang Y, Liu H, Xu Q. 2015. Association analysis of simple sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). PLoS One, 10(7), e0133054.

Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA. 2013. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. International journal of molecular sciences, 14(11), 22499- 22528.

Ondabu N, Maina S, Kimani W, Njarui D, Djikeng A, Ghimire S. 2017. Molecular characterizations of Kenyan Brachiaria grass ecotypes with microsatellite (SSR) markers. Agronomy, 7(1), 8.

Peng YAN, Zhang X, Deng Y, Ma X. 2008. Evaluation of genetic diversity in wild orchardgrass (Dactylis glomerata L.) based on AFLP markers. Hereditas, 145(4), 174-181.

Ponnaiah G, Gupta SK, Blümmel M, Marappa M, Pichaikannu S, Das RR, Rathore A. 2019. Utilization of molecular marker based genetic diversity patterns in hybrid parents to develop better forage quality multi-cut hybrids in pearl millet. Agriculture, 9(5), 97.

Roldán-Ruiz I, Kölliker, R. 2010. Marker-assisted selection in forage crops and turf: a review. Sustainable use of genetic diversity in forage and turf breeding, 383-390.

Safari H, Zebarjadi A, Kahrizi D, Jafari AA. 2019. The study of inter-specific relationships of Bromus genus based on SCoT and ISSR molecular markers. Molecular biology reports, 46(5), 5209-5223.

Silva PI, Martins AM, Gouvea EG, Pessoa-Filho M, Ferreira ME. 2013. Development and validation of microsatellite markers for Brachiaria ruziziensisobtained by partial genome assembly of Illumina single-end reads. Bmc Genomics, 14(1), 1-9.

Singh L, Pierce C, Santantonio N, Steiner R, Miller D, Reich J, Ray I. 2022. Validation of DNA marker‐assisted selection for forage biomass productivity under deficit irrigation in alfalfa. The Plant Genome, 15(1), e20195.

Sun M, Dong Z, Yang J, Wu W, Zhang C, Zhang J, Ma X. 2021. Transcriptomic resources for prairie grass (Bromus catharticus): expressed transcripts, tissue- specific genes, and identification and validation of EST-SSR markers. BMC plant biology, 21(1), 1-15.

Szenejko M, Śmietana P, Stępień E. 2016. Genetic diversity of Poa pratensis L. depending on geographical origin and compared with genetic markers. PeerJ, 4, e2489.

Thaikua S, Ebina M, Yamanaka N, Shimoda K, Suenaga K, Kawamoto Y. 2016. Tightly clustered markers linked to an apospory‐related gene region and quantitative trait loci mapping for agronomic traits in Brachiaria hybrids. Grassland science, 62(2), 69-80.

Villegas D, Arango J, Cardoso Arango JA, Castiblanco V, Vega JD. 2020. Towards new genotyping technologies to accelerate forage breeding through marker-assisted selection. Bogotá (Colombia): GROW Colombia 1p.

Williams WM, Stewart AV, Williamson ML. 2011. Bromus. Wild Crop Relatives: Genomic and Breeding Resources, 15-30.

Xie WG, Zhang XQ, Cai HW, Liu W, Peng Y 2010. Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochemical systematics and ecology, 38(4), 740-749.

Yamada T. 2011. Festuca. In wild crop relatives: genomic and breeding resources (pp. 153-164). Springer, Berlin, Heidelberg.

Yan H, Zhang Y, Zeng B, Yin G, Zhang X, Ji Y, Yan Y. 2016. Genetic diversity and association of EST-SSR and SCoT markers with rust traits in orchardgrass (Dactylis glomerata L.). Molecules, 21(1), 66.

Yi L, Dong Z, Lei Y, Zhao J, Xiong Y, Yang J, Ma X. 2021. Genetic Diversity and Molecular Characterization of Worldwide Prairie Grass (Bromus catharticus Vahl) Accessions Using SRAP Markers. Agronomy, 11(10), 2054.

Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Diao X. 2014. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC genomics, 15(1), 1-9.

Downloads

Published

25.10.2023

How to Cite

Bayhan, B., & Baran, N. (2023). Genetic Insights into Poaceae Forages: A Review of Current Marker Studies . Turkish Journal of Agriculture - Food Science and Technology, 11(10), 2003–2008. https://doi.org/10.24925/turjaf.v11i10.2003-2008.6048

Issue

Section

Review Articles