Determination of Bacterial Flora in Traditionally Produced Olive and Apple Vinegar Biofilm Forms by PCR DGGE Method
DOI:
https://doi.org/10.24925/turjaf.v11i11.2051-2058.6043Keywords:
Vinegar, Acetic acid bacteria, PCR-DGGE Technique, Microbial diversity , Molecular techniquesAbstract
In this study, bacterial population differences in biofilms of traditionally produced olive and apple vinegars were investigated. These differences were determined by isolating species, Polymerase Chain Reaction (PCR) amplification of the bacterial 16S rRNA gene’s V3 region, followed by Denaturing Gradient Gel Electrophoresis (DGGE) using the Polymerase Chain Reaction Denaturating Gradient Gel Electrophoresis (PCR-DGGE) method, and subsequently identified through DNA sequence analyses. The obtained sequences were aligned using the Basic Local Alignment Search Tool (BLAST) analysis. Molecular Evolutionary Genetics Analysis (MEGA X) software was utilized for phylogenetic analyses. While Komogataeibacter rhaeticus was detected as the dominant species in olive vinegar samples, Komogataeibacter xylinus (Gluconacetobacter), also known as vinegar bacteria, was detected as the dominant species in apple cider vinegar samples. The bacterial species in vinegars produced by traditional methods were identified and isolated, and these bacteria were stored as culture.
References
Aktan N, Yıldırım HK. 2011. Sirke Teknolojisi, Sidas Medya, Yayın No: 11-1B. ISBN : 978-605-87976-4-2.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, 25(17): 3389–3402. doi: 10.1093/nar/25.17.3389
Austin B. 2017. The value of cultures to modern microbiology. Antonie Van Leeuwenhoek, 110: 1247 -1256. doi: 10.1007/s10482-017-0840-8.
Bartowsky EJ, Xia D, Gibson RL, Fleet GH, Henschke PA. 2003. Spoilage of bottled red wine by acetic acid bacteria. Letters in Applied Microbiology, 36: 307-314. doi: 10.1046/j.1472-765x.2003.01314.x.
Bellassoued K, Ghrab F, Makni-Ayadi F, Van Pelt JV, Elfeki A, Ammar E. 2015. Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharm Biol., 53(11):1699-709. doi: 10.3109/13880209.2014.1001408
Boşgelmez Tınaz G, Ulusoy S, 2008. Characterization of N-butanoyl-L-homoserine lactone (C4-HSL) deficient clinical isolates of Pseudomonas aeruginosa. Microbial Pathogenesis 44 (2008) 13–19. doi: 10.1016/j.micpath.2007.06.005.
Budak NH, Aykin E, Seydim AC, Greene AK, Güzel Seydim ZB. 2014. Functional properties of vinegar. Journal of Food Science, 79(5): 757–64. doi: 10.1111/1750-3841.12434
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: Architecture and applications. BMC Bioinform. 10: 421. doi: 10.1186/1471-2105-10-421
Cocolin L, Diez A, Urso R, Rantsiou K, Comi G, Bergmaier I and Beimfohr C. (2007) Optimization of conditions for profiling bacterial populations in food by culture independent methods. International Journal of Food Microbiology. 120: 100–109. Doi: 10.1016/j.ijfoodmicro.2007.06.015
De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P. 2006. Application of denaturing gradient gel electrophoresis (DGJE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology, 23: 809–813. doi: 10.1016/j.fm.2006.01.006
Ebihara K, Nakajima A. 1988. Effect of acetic acid and vinegar on blood glucose and insulin responses to orally administered sucrose and starch. Agricultural Biology Chemistry, 52:1311–1312. doi: https://doi.org/10.1271/bbb1961.52.1311
Ercolini D, Hill PJ and Dodd CER. 2003. Bacterial community structure and location in stilton cheese. Applied and Environmental Microbiology, 69: 3540–3548. doi: 10.1128/AEM.69.6.3540-3548.2003
Fasoli S, Marzotto M, Rizzotti L, Rossi F, Dellaglio F, Torriani S. 2003. Bacterial composition of commercial probiotic products as evaluated by PCR-DGJE analysis. International Journal of Food Microbiology, 82: 59–70. doi: https://doi.org/10.1016/S0168-1605(02)00259-3
Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR. 1980. Thephylogeny of prokaryotes. Science, 209: 457–463. doi: 10.1126/science.6771870
Gilbride KA, Lee DY, Beaudette LA. 2006. Molecular techniques in waste water: Understanding microbial communities, detecting pathogens, andreal-time process control. J Microbiol Meth. 66: 1–20. doi: 10.1016/j.mimet.2006.02.016
Giudici P, Gullo M, Solieri L, Falcone PM, 2009. Technological and micro biological aspects of traditional balsamic vinegar and their influence on quality and sensorial properties. Adv. Food Nutr. Res. 58: 137–182. doi: 10.1016/S1043-4526(09)58004-7
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59: 307–321. doi: 10.1093/sysbio/syq010
Goh WN, Rosma A, Kaur B, Fazilah, A, Karim A, Bhat R. 2012. Fermentation of black tea broth (kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, 19(1): 109-117.
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology. 11:506–514. doi:10.1038/nrgastro.2014.66
Ho CW, Lazim AM, Fazry S, Hussain Zaki UKH, Lim SJ., 2017. Varieties, production, composition and health benefits of vinegars: a review. Food Chemical, 221: 1621–1630. doi: 10.1016/j.foodchem.2016.10.128
Holland JL, Louie L, Simor AE, Louie M. 2000. PCR detection of Escherichia Coli O157:H7 directly from stools: evaluation of commercial extraction methods for purifying fecal DNA. J Clin Microbiol., 38 (11): 4108-4113. doi: 10.1128/JCM.38.11.4108-4113.2000
Junior MMS, Silva LOB, Leao DJ, Ferreira SLC. 2014. Analytical strategies for determination of cadmium in Brazilian vinegar samples using ET AAS. Food Chemistry, 160: 209–213. doi:10.1016/j.foodchem.2014.03.090
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547–1549. doi: 10.1093/molbev/msy096
Lavasani PS, Motevaseli E, Shirzad M, Modarressi MH. 2017. Isolation and identification of Komagataeibacter xylinus from Iranian traditional vinegars and molecular analyses. Iran J Microbiol. 9(6): 338–347.
Machado RTA, Gutierrez J, Tercjak A, Trovatti E, Uahib FGM, Moreno GP, Barud HS. 2016. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, 152: 841–849. doi:10.1016/j.carbpol.2016.06.049
Maoloni A, Milanovic V, Cardinali F, Mangia NP, Murgia MA, Garofalo C, Clementi F, Osimani A, Aquilanti L. 2020. Bacterial and Fungal Communities of Gioddu as Revealed by PCR–DGJE Analysis. Indian J Microbiol. 60(1):119–123. doi: 10.1007/s12088-019-00838-6
Marič L, Cleenwerck I, Accetto T, Vandamme P, Trcek J. 2020. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. Isolated from Apple Cider Vinegar, Microorganisms. 8: 1178. doi:10.3390/microorganisms8081178
Milanović V, Osimani A, Garofalo C, De Filippis F, Ercolini D, Cardinali F, Taccari M, Aquilantia L, Clementi F. 2018. Profiling White wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGJE. International Journal Of Food Microbiology. 286: 86-74. doi: 10.1016/j.ijfoodmicro.2018.07.022
Mitrou P, Raptis AE, Lambadiari V, Boutati E, Petsiou E, Spanoudi F, Papakonstantinou E, Maratou E, Economopoulos T, Dimitriadis G, Raptis SA., 2010a,b. Vinegar decreases postprandial hyperglycemia in patients with type 1 diabetes. Diabetes Care, 33:2, doi: 10.2337/dc09-1354
Muyzer G, De Waal EC and Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700. doi: 10.1128/aem.59.3.695-700.1993.
Nakatsu CH. 2007. Soil microbial community analysis using Denaturing Gradient Gel Electrophoresis. Soil Science Society of America Journal. 71 (2): 562-571. doi: 10.2136/sssaj2006.0080
Ostman E, Granfeldt Y, Persson L, Björck I. 2005. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. European Journal Clinical Nutrition. 59: 983–988. doi: 10.1038/sj.ejcn.1602197
Ovreas L, Forney L, Daae FL, Torsvik V. 1997. Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 63 (9): 3367-3373. doi: 10.1128/aem.63.9.3367-3373.1997
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics. 31: 3691–3693. doi: 10.1093/bioinformatics/btv421
Petsiou EI, Mitrou PI, Raptis SA, Dimitriadis GD. 2014. Effect and Mechanisms of Action of Vinegar on Glucose Metabolism, Lipid Profile and Body Weight, Nutrition rev., 72 (10): 651-661. doi: 10.1111/nure.12125
Saichana N, Matsushita K, Adachi O, Frébort, I, Frebortova J. 2015. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33: 1260–1271. doi: 10.1016/j.biotechadv.2014.12.001
Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 30: 2068–2069, doi: 10.1093/bioinformatics/btu153
Sofu A, Ekinci FY. 2016. Bacterial diversity dynamics of traditional Turkish Ezine Cheese as evaluated by PCR-DGJE and SSCP analysis. International Journal of Dairy Technology, doi: 10.1111/1471-0307.12311.
Sofu A, Ekinci FY. 2010. Identification of lactic acid bacteria in different traditional cheeses by using PCR-DGJE method.1st Int. Congress on Food Technology, Antalya, 3 - 6 Ekim 2010, page 110.
Song J, Zhang JH, Kang SJ, Zhang HY, Yuan J, Zeng CZ, Zhang F, Huang YL. 2019. Analysis of microbial diversity in apple vinegar fermentation process through 16s rDNA sequencing. Food Science Nutrition, 7:1230–1238. doi: 10.1002/fsn3.944
Stornik A, Skok B, Trček J. 2016. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar. Bacterial Microbiota in Apple Cider Vinegar. Food Technol. Biotechnol. 54 (1): 113–119. doi: 10.17113/ftb.54.01.16.4082
Şahin İ. (1982) Asit Fermantasyonları (Sirke, Laktik ve Sitrik Asit Fermantasyonları). Ankara Üniversitesi Ziraat Fakültesi Teksir No:78, 142s.
Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526. doi: 10.1093/oxfordjournals.molbev.a040023
Tangüler H, Mert H, İlman F, Yücel B, Gençtürk S. (2021). Elma atıklarından elma sirkesi üretimi üzerine bir araştırma. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10 (1): 132-139. doi: 10.28948/ngumuh.673508
Yetiman AE, Kesmen Z. 2015. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. International Journal of Food Microbiology 204: 9–16. doi: 10.1016/j.ijfoodmicro.2015.03.013
Yücel Şengün İ, Kılıç G., 2016. Isolation, identification and current taxonomy of acetic acid bacteria. Biological Diversity and Conservation. 9 / 1: 154-162.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.