Microorganisms and Effects on the Olive Oil Quality





olive oil, lactic acid bacteria, yeasts, enzymes, flavor, quality


Olive oil is one of the most important vegetable oils obtained mechanically from olive fruit and can be consumed unrefined. Olive oil contains prominent levels of unsaturated fatty acids and antioxidant compounds known to be beneficial to human health. Newly produced olive oil is cloudy due to olive pulp particles and micro droplets caused by water. The solid particles and water that cause this cloudy appearance create an environment where some microorganisms can survive. While some of the microorganisms improve olive oil's physicochemical and sensory properties thanks to their high enzymatic activity, others deteriorate the quality of olive oil. The diversity of microorganisms in olive oil may vary depending on factors such as olive variety, harvesting method, processing technique, storage conditions and duration. In this study, an attempt was made to review the microorganisms present in olive oil and their effects on olive oil quality.


Andersson, R. E. (1980). Lipase Production, Lipolysis, and Volatile Compounds by Pseudomonas fluorescens in Fat Containing Media. Journal of Food Science, 45(6), 1694–1701. https://doi.org/10.1111/j.1365-2621.1980.tb07591.x

Aparicio, R., & Harwood, J. (2013). Handbook of Olive Oil. In R. Aparicio & J. Harwood (Eds.), Handbook of Olive Oil: Analysis and Properties. Springer US. https://doi.org/10.1007/978-1-4614-7777-8

Besnard, G., Khadari, B., Navascués, M., Fernández-Mazuecos, M., Bakkali, A. El, Arrigo, N., Baali-Cherif, D., Brunini-Bronzini de Caraffa, V., Santoni, S., Vargas, P., & Savolainen, V. (2013). The complex history of the olive tree: From late quaternary diversification of mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences, 280(1756). https://doi.org/10.1098/rspb.2012.2833

Breschi, C., Guerrini, L., Corti, F., Calamai, L., Domizio, P., Parenti, A., & Zanoni, B. (2021). Quality of veiled olive oil: Role of turbidity components. Italian Journal of Food Science, 33(3), 33–46. https://doi.org/10.15586/ijfs.v33i3.2077

Breschi, C., Guerrini, L., Domizio, P., Ferraro, G., Calamai, L., Canuti, V., Masella, P., Parenti, A., Fratini, E., Fia, G., & Zanoni, B. (2019). Physical, Chemical, and Biological Characterization of Veiled Extra Virgin Olive Oil Turbidity for Degradation Risk Assessment. European Journal of Lipid Science and Technology, 121(11). https://doi.org/10.1002/ejlt.201900195

Čadež, N., Dlauchy, D., Tome, M., & Péter, G. (2021). Novakomyces olei sp. nov., the First Member of a Novel Taphrinomycotina Lineage. Microorganisms 2021, Vol. 9, Page 301, 9(2), 301. https://doi.org/10.3390/MICROORGANISMS9020301

Cevik, S., Ozkan, G., & Kıralan, M. (2016). Optimization of malaxation process of virgin olive oil using desired and undesired volatile contents. Lwt, 73, 514–523. https://doi.org/10.1016/j.lwt.2016.06.058

Ciafardini, G., Cioccia, G., & Zullo, B. A. (2017). Taggiasca extra virgin olive oil colonization by yeasts during the extraction process. Food Microbiology, 62, 58–61. https://doi.org/10.1016/j.fm.2016.09.014

Ciafardini, G., & Zullo, B. A. (2002). Microbiological activity in stored olive oil. International Journal of Food Microbiology, 75(1–2), 111–118. https://doi.org/10.1016/S0168-1605(01)00739-5

Ciafardini, G., & Zullo, B. A. (2015). Effect of lipolytic activity of Candida adriatica, Candida diddensiae and Yamadazyma terventina on the acidity of extra-virgin olive oil with a different polyphenol and water content. Food Microbiology, 47, 12–20. https://doi.org/10.1016/j.fm.2014.10.010

Ciafardini, G., & Zullo, B. A. (2018). Virgin olive oil yeasts: A review. Food Microbiology, 70, 245–253. https://doi.org/10.1016/j.fm.2017.10.010

Ciafardini, G., & Zullo, B. A. (2020). In vitro potential antioxidant activity of indigenous yeasts isolated from virgin olive oil. Journal of Applied Microbiology, 128(3), 853–861. https://doi.org/10.1111/jam.14520

Ciafardini, G., & Zullo, B. A. (2022). Microbiological and Enzymatic Activity Modulates the Bitter Taste Reduction in Decanted Coratina Olive Oil. Foods, 11(6). https://doi.org/10.3390/foods11060867

Ciafardini, G., Zullo, B. A., Cioccia, G., & Iride, A. (2006). Lipolytic activity of Williopsis californica and Saccharomyces cerevisiae in extra virgin olive oil. International Journal of Food Microbiology, 107(1), 27–32. https://doi.org/10.1016/j.ijfoodmicro.2005.08.008

Ciafardini, G., Zullo, B. A., & Peca, G. (2004). Presence of microorganisms in flavoured extra-virgin olive oil. Annals of Microbiology, 54(2), 161–168.

Davis, C., Bryan, J., Hodgson, J., & Murphy, K. (2015). Definition of the mediterranean diet: A literature review. Nutrients, 7(11), 9139–9153. https://doi.org/10.3390/nu7115459

Di Giovacchino, L., Sestili, S., & Di Vincenzo, D. (2002). Influence of olive processing on virgin olive oil quality. In European Journal of Lipid Science and Technology (Vol. 104, Issues 9–10, pp. 587–601). https://doi.org/10.1002/1438-9312(200210)104:9/10<587::AID-EJLT587>3.0.CO;2-M

Ede, A., & El, S. N. (2022). Zeytinyağı Üretim Atıklarının Biyolojik Aktiviteleri ve Gıdalarda Kullanım Potansiyeli. Turkish Journal of Agriculture - Food Science and Technology, 10(5), 798–810. https://doi.org/10.24925/turjaf.v10i5.798-810.4605

El Haouhay, N., Samaniego-Sánchez, C., Asehraou, A., Villalón-Mir, M., & López-García De La Serrana, H. (2015). Microbiological characterization of Picholine variety olives and analysis of olive oil produced in traditional oil mills in Morocco. CYTA - Journal of Food, 13(1), 107–115. https://doi.org/10.1080/19476337.2014.918178

Erinç, H., Yorulmaz, A., & Tekin, A. (2018). the Effect of Malaxation Time and Temperature on Some Properties of Olive Oil. Gida / the Journal of Food, 43(5), 826–834. https://doi.org/10.15237/gida.gd18078

Fakas, S., Kefalogianni, I., Makri, A., Tsoumpeli, G., Rouni, G., Gardeli, C., Papanikolaou, S., & Aggelis, G. (2010). Characterization of olive fruit microflora and its effect on olive oil volatile compounds biogenesis. European Journal of Lipid Science and Technology, 112(9), 1024–1032. https://doi.org/10.1002/ejlt.201000043

Fancello, F., Multineddu, C., Santona, M., Deiana, P., Zara, G., Mannazzu, I., Budroni, M., Dettori, S., & Zara, S. (2020). Bacterial Biodiversity of Extra Virgin Olive Oils and Their Potential Biotechnological Exploitation. Microorganisms, 8(1), 97. https://doi.org/10.3390/microorganisms8010097

Fernandes-Silva, A. A., Falco, V., Correia, C. M., & Villalobos, F. J. (2013). Sensory analysis and volatile compounds of olive oil (cv. Cobrançosa) from different irrigation regimes. Grasas y Aceites, 64(1), 59–67. https://doi.org/10.3989/gya.069712

Gharbi, I., Issaoui, M., Haddadi, D., Gheith, S., Rhim, A., Cheraief, I., Nour, M., Flamini, G., & Hammami, M. (2017). Fungal volatile organic compounds (FVOCs) contribution in olive oil aroma and volatile biogenesis during olive preprocessing storage. Journal of Food Biochemistry, 41(4), e12368. https://doi.org/10.1111/jfbc.12368

Giavalisco, M., Zotta, T., Parente, E., Siesto, G., Capece, A., & Ricciardi, A. (2023). Effect of oil-born yeasts on the quality of extra-virgin olive oils of Basilicata region. International Journal of Food Microbiology, 386, 110041. https://doi.org/10.1016/j.ijfoodmicro.2022.110041

Göğüş, F., Özkaya, M. T., & Ötleş, S. (2009). Zeytinyağı, Eflatun Yayınevi. Ankara.

Gómez-Rico, A., Salvador, M. D., Moriana, A., Pérez, D., Olmedilla, N., Ribas, F., & Fregapane, G. (2007). Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chemistry, 100(2), 568–578. https://doi.org/10.1016/j.foodchem.2005.09.075

Guerrini, L., Breschi, C., Zanoni, B., Calamai, L., Angeloni, G., Masella, P., & Parenti, A. (2020). Filtration scheduling: Quality changes in freshly produced virgin olive oil. Foods, 9(8), 1067. https://doi.org/10.3390/foods9081067

Guerrini, S., Mari, E., Barbato, D., & Granchi, L. (2019). Extra virgin olive oil quality as affected by yeast species occurring in the extraction process. Foods, 8(10), 457. https://doi.org/10.3390/foods8100457

Guerrini, S., Mari, E., Migliorini, M., Cherubini, C., Trapani, S., Zanoni, B., & Vincenzini, M. (2015). Investigation on microbiology of olive oil extraction process. Italian Journal of Food Science, 27(2), 108–119. https://doi.org/10.14674/1120-1770/ijfs.v190

Gündeşli, K., & Küden, A. (2020). Bazı Yerli ve Yabancı Zeytin Çeşitlerinin Meyve Kalite Özelliklerinin ve Soğuklama Gereksinimlerinin Saptanması. Anadolu Journal Of Agrıcultural Scıences, 35, 1308–8769. https://doi.org/10.7161/omuanajas.655591

Hamid abadi Sherahi, M., Shahidi, F., Yazdi, F. T., & Hashemi, S. M. B. (2018). Effect of Lactobacillus plantarum on olive and olive oil quality during fermentation process. LWT, 89, 572–580. https://doi.org/10.1016/j.lwt.2017.10.025

Kalogianni, E. P., Georgiou, D., & Hasanov, J. H. (2019). Olive Oil Processing: Current Knowledge, Literature Gaps, and Future Perspectives. JAOCS, Journal of the American Oil Chemists’ Society, 96(5), 481–507. https://doi.org/10.1002/aocs.12207

Kang, S. H., Kim, H. R., Kim, J. H., Ahn, B. H., Kim, T. W., & Lee, J. E. (2014). Identification of wild yeast strains and analysis of their ß-glucan and glutathione levels for use in Makgeolli brewing. Mycobiology, 42(4), 361–367. https://doi.org/10.5941/MYCO.2014.42.4.361

Kayahan, M., & Tekin, A. (2006). Zeytinyağı üretim teknolojisi. TMMOB Gıda Mühendisleri Odası.

Koidis, A., Triantafillou, E., & Boskou, D. (2008). Endogenous microflora in turbid virgin olive oils and the physicochemical characteristics of these oils. European Journal of Lipid Science and Technology, 110(2), 164–171. https://doi.org/10.1002/ejlt.200700055

Landa, B. B., Pérez, A. G., Luaces, P., Montes-Borrego, M., Navas-Cortés, J. A., & Sanz, C. (2019). Insights into the effect of Verticillium dahliae defoliating-pathotype infection on the content of phenolic and volatile compounds related to the sensory properties of virgin olive oil. Frontiers in Plant Science, 10, 232. https://doi.org/10.3389/fpls.2019.00232

Lechhab, T., Lechhab, W., Cacciola, F., & Salmoun, F. (2022). Sets of internal and external factors influencing olive oil (Olea europaea L.) composition: a review. European Food Research and Technology, 1(4), 1069–1088. https://doi.org/10.1007/s00217-021-03947-z

Li, Y. C., Luo, Y., Meng, F. B., Li, J., Chen, W. J., Liu, D. Y., Zou, L. H., & Zhou, L. (2022). Preparation and characterization of feruloylated oat β-glucan with antioxidant activity and colon-targeted delivery. Carbohydrate Polymers, 279, 119002. https://doi.org/10.1016/j.carbpol.2021.119002

Mafrica, R., Piscopo, A., De Bruno, A., & Poiana, M. (2021). Effects of climate on fruit growth and development on olive oil quality in cultivar carolea. Agriculture (Switzerland), 11(2), 1–18. https://doi.org/10.3390/agriculture11020147

Marx, Í. M. G., Rodrigues, N., Veloso, A. C. A., Casal, S., Pereira, J. A., & Peres, A. M. (2021). Effect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. Lwt, 137, 110426. https://doi.org/10.1016/j.lwt.2020.110426

Mejri, S., Mabrouk, Y., Jerbi, T., Sifi, S., Saidi, M., & Gargouri, M. (2012). Effects of gamma ray irradiation on olive fruits quality, enzyme activities and issued oil. BioTechnology: An Indian Journal, 6(2), 47–52.

Murillo-Cruz, M. C., García-Ruíz, A. B., Chova-Martínez, M., & Bermejo-Román, R. (2021). Improvement of physico-chemical properties of arbequina extra virgin olive oil enriched with β-carotene from fungi. Journal of Oleo Science, 70(4), 459–469. https://doi.org/10.5650/jos.ess20195

Navajas-Porras, B., Pérez-Burillo, S., Morales-Pérez, J., Rufián-Henares, J. A., & Pastoriza, S. (2020). Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chemistry, 325. https://doi.org/10.1016/j.foodchem.2020.126926

Novoselić, A., Klisović, D., Lukić, I., Lukić, M., & Brkić Bubola, K. (2021). The use of olive leaves in buža olive cultivar oil production: Exploring the impact on oil yield and chemical composition. Agriculture (Switzerland), 11(10), 917. https://doi.org/10.3390/agriculture11100917

Ötleş, S., & Özyurt, V. H. (2012). Oleuropein ve Önemi. Zeytin Bilimi (Vol. 3, Issue 1, pp. 59–71). Zeytincilik Araştırma Enstitüsü Müdürlüğü - İZMİR.

Öztürk, M., Altay, V., Gönenç, T. M., Unal, B. T., Efe, R., Akçiçek, E., & Bukhari, A. (2021). An overview of olive cultivation in Turkey: Botanical features, eco-physiology and phytochemical aspects. Agronomy, 11(2), 1–26. https://doi.org/10.3390/agronomy11020295

Palla, M., Digiacomo, M., Cristani, C., Bertini, S., Giovannetti, M., Macchia, M., Manera, C., & Agnolucci, M. (2018). Composition of health-promoting phenolic compounds in two extra virgin olive oils and diversity of associated yeasts. Journal of Food Composition and Analysis, 74, 27–33. https://doi.org/10.1016/j.jfca.2018.08.008

Pérez, A., León, L., Pascual, M., Romero-Segura, C., Sánchez-Ortiz, A., De La Rosa, R., & Sanz, C. (2014). Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS ONE, 9(3), 92898. https://doi.org/10.1371/journal.pone.0092898

Péter, G., Dlauchy, D., Tóbiás, A., Fülöp, L., Podgoršek, M., & Čadež, N. (2017). Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil. Antonie van Leeuwenhoek, 110(5), 657–664. https://doi.org/10.1007/s10482-017-0832-8

Pizzolante, G., Durante, M., Rizzo, D., Di Salvo, M., Tredici, S. M., Tufariello, M., De Paolis, A., Talà, A., Mita, G., Alifano, P., & De Benedetto, G. E. (2018). Characterization of two Pantoea strains isolated from extra-virgin olive oil. AMB Express, 8(1), 1–17. https://doi.org/10.1186/S13568-018-0642-Z/TABLES/2

Romani, A., Ieri, F., Urciuoli, S., Noce, A., Marrone, G., Nediani, C., & Bernini, R. (2019). Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of olea europaea L. Nutrients, 11(8). https://doi.org/10.3390/nu11081776

Santona, M., Sanna, M. L., Multineddu, C., Fancello, F., de la Fuente, S. A., Dettori, S., & Zara, S. (2018). Microbial biodiversity of Sardinian oleic ecosystems. Food Microbiology, 70, 65–75. https://doi.org/10.1016/J.FM.2017.09.004

Servili, M., Begliomini, A. L., Montedoro, G., Petruccioli, M., & Federici, F. (1992). Utilisation of a yeast pectinase in olive oil extraction and red wine making processes. Journal of the Science of Food and Agriculture, 58(2), 253–260. https://doi.org/10.1002/jsfa.2740580214

Vichi, S., Boynuegri, P., Caixach, J., & Romero, A. (2015). Quality losses in virgin olive oil due to washing and short-term storage before olive milling. European Journal of Lipid Science and Technology, 117(12), 2015–2022. https://doi.org/10.1002/ejlt.201500066

Vichi, S., Romero, A., Gallardo-Chacón, J., Tous, J., López-Tamames, E., & Buxaderas, S. (2009). Influence of olives’ storage conditions on the formation of volatile phenols and their role in off-odor formation in the oil. Journal of Agricultural and Food Chemistry, 57(4), 1449–1455. https://doi.org/10.1021/jf803242z

Vichi, S., Romero, A., Tous, J., & Caixach, J. (2011). The activity of healthy olive microbiota during virgin olive oil extraction influences oil chemical composition. Journal of Agricultural and Food Chemistry, 59(9), 4705–4714. https://doi.org/10.1021/jf200642s

Zullo, B. A., & Ciafardini, G. (2008). The olive oil oxygen radical absorbance capacity (DPPH assay) as a quality indicator. European Journal of Lipid Science and Technology, 110(5), 428–434. https://doi.org/10.1002/ejlt.200700136

Zullo, B. A., & Ciafardini, G. (2019). Evaluation of physiological properties of yeast strains isolated from olive oil and their in vitro probiotic trait. Food Microbiology, 78, 179–187. https://doi.org/10.1016/j.fm.2018.10.016

Zullo, B. A., & Ciafardini, G. (2020a). Differential microbial composition of monovarietal and blended extra virgin olive oils determines oil quality during storage. Microorganisms, 8(3), 402. https://doi.org/10.3390/microorganisms8030402

Zullo, B. A., & Ciafardini, G. (2020b). Virgin olive oil quality is affected by the microbiota that comprise the biotic fraction of the oil. Microorganisms, 8(5), 663. https://doi.org/10.3390/microorganisms8050663

Zullo, B. A., & Ciafardini, G. (2022). Role of yeasts in the qualitative structuring of extra virgin olive oil. Journal of Applied Microbiology, 132(6), 4033–4041. https://doi.org/10.1111/jam.15478

Zullo, B. A., Cioccia, G., & Ciafardini, G. (2010). Distribution of dimorphic yeast species in commercial extra virgin olive oil. Food Microbiology, 27(8), 1035–1042. https://doi.org/10.1016/J.FM.2010.07.005

Zullo, B. A., Cioccia, G., & Ciafardini, G. (2013). Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage. Food Microbiology, 36(1), 70–78. https://doi.org/10.1016/j.fm.2013.04.006

Zullo, B. A., Venditti, G., & Ciafardini, G. (2021). Effects of the filtration on the biotic fraction of extra virgin olive oil. Foods, 10(8). https://doi.org/10.3390/foods10081677




How to Cite

Aydın, A., Uymaz Tezel, B., & Öğütçü, M. (2024). Microorganisms and Effects on the Olive Oil Quality . Turkish Journal of Agriculture - Food Science and Technology, 12(1), 100–108. https://doi.org/10.24925/turjaf.v12i1.100-108.6182



Review Articles