Nutrient Content and in Vitro Digestibility of Apple Pomace Derived from Three Different Apple Cultivars


  • Abdulhamid Muhammad Garba Niğde Ömer Halisdemir University, Graduate School of Natural and Applied Sciences Institute, Department of Animal Production and Technologies
  • Sema Yaman Fırıncıoğlu Niğde Ömer Halisdemir University, Agricultural Sciences and Technologies Faculty, Department of Animal Production and Technologies, 51240 Niğde, Turkey



Agro-industrial waste products, Nutritional value, Apple pomace, In-vitro digestibility, Ruminant feeding


This study focused on evaluating the nutritional characteristics and in vitro true digestibility of apple pomace derived from three apple cultivars: Golden Delicious, Starking, and Granny Smith (Malus domestica Borkh). These apple cultivars were sourced from the local market in Nigde, Turkiye. Statistical analyses, including one-way analysis of variance (ANOVA) and Duncan's test, were employed to assess variations among the apple pomace samples. Results indicated that, except for in vitro true digestibility, there were no significant variations in the chemical composition and total phenolic matter contents among the apple pomaces (P>0.05). However, Granny Smith apple pomace exhibited distinct features, such as higher neutral detergent fiber content (29.80%), elevated crude protein levels (5.09%) and substantial acid detergent fiber (25.30%) values. In contrast, Starking apple pomace displayed superior air-dry matter (27.24%), while Golden Delicious showcased enhanced dry matter (95.3%) and ash content (2.00%). Regarding total phenolic matter contents, Granny Smith excelled with 112.4 mg GAE/100g, outperforming Starking (103 mg GAE/100g) and Golden Delicious (75.8 mg GAE/100g). Crucially, Starking demonstrated superior in vitro true digestibility, with values reaching 92.36% (as received) and 92.23% (dry matter). Granny Smith, in comparison to Golden Delicious and Starking, displayed significantly different neutral detergent fiber digestibility (P<0.05). Starking apple pomace exhibit the highest overall digestibility among the apple pomaces analysed in this study, hence recommended for use in ruminant nutrition. These findings have implications for the potential utilization of apple pomace in diverse applications, given the diverse nutritional profiles of these cultivars.


Adil, İ. H., Çetin, H. İ., Yener, M. E. & Bayındırlı, A. (2007). Subcritical (carbon dioxide+ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. Journal Supercritical Fluids, 43(1), 55–63.

Afzal, B. A., Ganai A. M. & Ahmad, H. A. (2015). Utilisation of apple pomace as livestock feed: a review. The Indian Journal of Small Ruminants, 21(2), 165-179.

Ahn, J. H., Jol, I. H. & Lee, J. S. (2002). The use of apple pomace in rice straw based diets of Korean native goats (capra hircus). Asian-Australian Journal of Animal Science, 15(11), 1599- 1605.

Albuquerque, P. M. (2003). Estudo da produ¸c˜ao de prote´ına microbiana a partir do baga¸co de ma¸c˜a. Florian´opolis: UFSC, 2003. Dissertation (Master’s degree in Food Engineering), Departamento de Engenharia Qu´ımica e Engenharia de Alimentos, Universidade Federal de Santa Catarina.

Alibes, X., Muñoz, F. & Rodriguez, J. (1984). Feeding value of apple pomace silage for sheep. Animal Feed Science and Technology, 11(3), 189-197.

Anrique, G. R. & Viveros, M. P. (2002). Effect of ensiling on chemical composition and rumen degradability of apple pomace. Archivos de Medicina Veterinaria, 34 (2), 189-197.

AOAC (Association of Official Analytical Chemists International). (1995). Official Methods of Analysis, 16th ed. AOAC, Arlington, Virginia, USA.

Bai, X.-L., Yue, T.-L., Yuan, Y.-H. & Zhang, H.-W. (2010). Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis: sample preparation. Journal of Separation Science, 33(23-24), 3751–3758.

Cetkovi´c, G., ´ Canadanovi´c-Brunet, J., Djilas, S., Savatovi´c, S., Mandi´c, A. & Tumbas, V. (2007). Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chemistry, 109(2), 340–347.

Eke-Ejiofor, J., Igwe, C. U. & Nwanyanwu, C. E. (2018). Apple pomace: A review of its potential health benefits. Food Science & Nutrition, 6(8), 1791-1796.

Er, F. & Özcan, M. M. (2010). Chemical compositional properties and mineral contents of some apple cultivars. South Western Journal of Horticulture, Biology and Environment, 1(1), 121-131.

Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agricultural Handbook No. 379. ARS-USDA, Washington, DC.

Grigoraş, C. G. (2012). Valorisation des fruits et des sous-produits de l’industrie de transformation des fruits par extraction des composés bioactifs. Thèse de Doctorat en Chimie Génie de l'environnement, Université d'Orléans et Université, Vasile Alecsandri de Bacău (România),

Heuzé, V., Tran, G., Hassoun, P. & Lebas, F. (2020). Apple pomace and culled apples. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. Last updated on June 8, 2020, 14:32

Jakobek, L., Ištuk, J., Buljeta, I., Vo´ca, S., Žlabur, J.Š. & Babojeli´c, M.S. (2020). Traditional, indigenous apple varieties, a fruit with potential for beneficial effects: Their quality traits and bioactive polyphenol contents. Foods, 9(52). https://doi:10.3390/foods9010052

Jin, H., Kim, H. S., Kim, S. K., Shin, M. K., Kim, J. H. & Lee, J. W. (2002). Production of heteropolysaccharide-7 by Beijerinckia indica from agro-industrial by-products. Enzyme Microbiology and Technology, 30, 822– 827.

Kafilzadeh, F., Taasoli, G. & Maleki, A. (2008). Kinetics of digestion and fermentation of apple pomace from juice and puree making. Research Journal of Biological Sciences, 3(10), 1143-1146.

Kennedy, M., List, D., Lu, Y., Newman, R.H., Sims, I.M., Bain, P.J.S. (1999). Apple pomace and products derived from apple pomace: uses, composition and analysis. In: Analysis of Plant Waste Materials, vol. 20. Springer-Verlag, Berlin, pp. 75– 119.

Mertens, D. R. (2016, June). Using uNDF to predict dairy cow performance and design rations. In Proceedings of the Four-State Dairy Nutrition and Management Conference, Dubuque, IA, USA (pp. 12-13).

Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International, 39(9), 945–963.

Preston, R.L. (2014, March 9). “Feed Composition Tables |Know the Nutritional Value of Your Feed.” BEEF. Retrieved from nutrition/2015-feedcomposition-tables-knownutritional-value-your-feed

Santarelli, V., Neri, L., Sacchetti, G., Di Mattia, C. D., Mastrocola, D., & Pittia, P. (2020). Response of organic and conventional apples to freezing and freezing pre-treatments: Focus on polyphenols content and antioxidant activity. Food chemistry, 308, 125570.

Sarnklong, C., Cone, J. W., Pellikaan, W., & Hendriks, W. H. (2010). Utilization of milled by-products from the palm oil industry in ruminant nutrition. Journal of Animal Science, 88(5), 1755-1769.

Singh, B., & Narang, M. P. (1992). Studies on the rumen degradation kinetics and utilization of apple pomace. Bioresource technology, 39(3), 233-240.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.

Tagliapietra, F., Cattani, M., Guadagnin, M., Haddi, M. L., Sulas, L., Muresu, R., Squartini, A., Schiavon, S. & Bailoni, L. (2015). “Associative effects of poor-quality forages combined with food industry by-products determined in vitro with an automated gas-production system”, Animal Production Science, 55(9), 1117-1122.

Van Soest P.J, Robertson J.B. & Lewis B.A. (1991). New urea enzymatic dialysis procedure for total dietary fiber. Journal of Dairy Science, 74, 3583-3597.

Velderrain-Rodríguez, G. R., Quirós-Sauceda, A. E., González Aguilar, G. A., Siddiqui, M. W., & Ayala Zavala, J. F. (2015). Technologies in fresh-cut fruit and vegetables. Minimally Processed Foods: Technologies for Safety, Quality, and Convenience, 79-103.

Vrhovsek, U., Rigo, A., Tonon, D., & Mattivi, F. (2004). Quantitation of polyphenols in different apple varieties. Journal of agricultural and food chemistry, 52(21), 6532-6538.

Yuri, J. A., Moggia, C., Sepulveda, A., Poblete-Echeverría, C., Valdés-Gómez, H., & Torres, C. A. (2019). Effect of cultivar, rootstock, and growing conditions on fruit maturity and postharvest quality as part of a six-year apple trial in Chile. Scientia Horticulturae, 253, 70-79.




How to Cite

Garba, A. M., & Yaman Fırıncıoğlu, S. (2024). Nutrient Content and in Vitro Digestibility of Apple Pomace Derived from Three Different Apple Cultivars. Turkish Journal of Agriculture - Food Science and Technology, 12(4), 478–483.



Research Paper