Response of spring rice (Oryza sativa L.) varieties to different nitrogen application methods at Nawalparasi West, Nepal




Benefit-cost ratio, nitrogen management, nano urea, leaf color chart, spring rice varieties, yield attributes


Rice (Oryza sativa L.) cultivation necessitates an adequate supply of nitrogen to achieve optimal growth and yield. This study, conducted in Nawalparasi West from February to June 2023, aimed to assess the effects of nitrogen management through a foliar spray of nano urea, compared to need-based nitrogen management using the Leaf Color Chart (LCC) and the Recommended Dose of urea Fertilizer (RDF) application. The experiment followed a Randomized Complete Block Design (RCBD) with three replications, incorporating four nitrogen management levels (Control, RDF through urea fertilizer (120 kg/ha), 25% of RDF through basal urea (30 kg/ha) + nano urea, and 25% of RDF through basal urea (30 kg/ha) + (LCC) and two rice varieties (Chaite-5 and Hardinath-1). The results indicated that the LCC-based treatment produced the highest grain yield at 5.18 mt/ha, statistically similar to the yield of the nano urea-based treatment (5.04 mt/ha). The enhanced yields were attributed to more effective tillers per m² (260.17 tillers/m² and 253.17 tillers/m², respectively), longer panicle length (28.12 cm and 25.99 cm), more filled grains per panicle (210.03 and 215.73), and lower sterility percentage (24.93% and 26.95%). Despite comparable yields, nano urea application proved to be more cost-effective [97,926.10 Nepalese Rupees (NRs)] with a higher benefit-cost ratio (1.78) and greater ease of application for farmers compared to the LCC. Varietal responses varied, with Hardinath-1 exhibiting the highest yield with LCC-based nitrogen application (5.37 mt/ha), and Chaite-5 demonstrating the highest yield (4.778 mt/ha); with nano urea-based nitrogen application (5.31 mt/ha). Chaite-5 displayed a greater effective number of tillers per m² (241.42 tillers/m²) and filled grains per panicle (224.56). Consequently, it is suggested that nano urea-based nitrogen application, particularly in conjunction with a variety of Chaite-5, holds the potential for improved productivity.


Adhikari, S., Sah, S., Gautam, S., & Subedi, D. (2022). Leaf Color Chart-Based Nitrogen Management in Spring Rice at Rajapur, Bardiya, Nepal. SSRN Electronic Journal. 1-26.

Agriculture Information And Training Center (AITC). (2023). Agriculture and Livestock Diary 2080 (pp. 1–348). Government of Nepal, Ministry of Agriculture and Livestock Development, Agiculture Information and Training Center. (accessed on 19 November, 2023).

Alam, M., Ladha, J., S, K., Foyjunnessa, Rashid-ur-Harun, Khan, A. H., & RJ, B. (2005). Leaf Color Chart for Managing Nitrogen Fertilizer in Lowland Rice in Bangladesh. Agronomy Journal, 97, 949–959.

Ali, M. M., Al-Ani, A., Eamus, D., & Tan, D. K. Y. (2017). Leaf nitrogen determination using non-destructive techniques–A review. Journal of Plant Nutrition, 40(7), 928–953.

Astaneh, N., Bazrafshan, F., Zare, M., Amiri, B., & Bahrani, A. (2021). Nano-fertilizer prevents environmental pollution and improves physiological traits of wheat grown under drought stress conditions. Scientia Agropecuaria, 12(1), 41–47.

Balasubramanian, V., Morales, A. C., Cruz, R. T., & Abdulrachman, S. (1998). On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems, 53(1), 59–69.

Baral, B., Pande, K., Gaihre, Y., Baral, K., Sah, S., Thapa, Y., & Singh, U. (2020). Increasing nitrogen use efficiency in rice through fertilizer application method under rainfed drought conditions in Nepal. Nutrient Cycling in Agroecosystems. 103-114.

Basavegowda, N., & Baek, K.-H. (2021). Current and future perspectives on the use of nanofertilizers for sustainable agriculture: The case of phosphorus nanofertilizer. 3 Biotech, 11(7), 357. (accessed on 7 November, 2023).

Bhatia, A., Pathak, H., Jain, N., Singh, P. K., & Tomer, R. (2012). Greenhouse gas mitigation in rice-wheat system with leaf color chart-based urea application. Environmental Monitoring and Assessment, 184(5), 3095–3107.

Bhatt, S., & Ghimire, S. (2024). Quantifying the impact of nitrogen levels on spring maize varieties (Zea mays L.) in Kanchanpur, Nepal. Innovations in Agriculture, 1–8.

Bhavana, B., Laxminarayana, P., Latha, A. M., & Anjaiah, T. (2020). Judicious Nitrogen Management using Leaf Colour Chart for Enhancing Growth and Yield of Short Duration Transplanted Rice (Oryza sativa L). International Journal of Current Microbiology and Applied Sciences, 9(6), 2850–2856.

Bijay-Singh, & Singh, V. K. (2017). Fertilizer Management in Rice. In B. S. Chauhan, K. Jabran, & G. Mahajan (Eds.), Rice Production Worldwide (pp. 217–253). Springer International Publishing.

Bremner, J. M., & Hauck, R. D. (2015). Advances in Methodology for Research on Nitrogen Transformations in Soils. In F. J. Stevenson (Ed.), Agronomy Monographs (pp. 467–502). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

Chen, X.-P., Cui, Z.-L., Vitousek, P. M., Cassman, K. G., Matson, P. A., Bai, J.-S., Meng, Q.-F., Hou, P., Yue, S.-C., Römheld, V., & Zhang, F.-S. (2011). Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences, 108(16), 6399–6404.

Dawadi, B., Ghimire, S., & Gautam, N. (2023). Assessment of Productivity, Profit, and Problems Associated with Wheat (Triticum aestivum L.) Production in West Nawalparasi, Nepal. AgroEnvironmental Sustainability, 1(2), 122–132.

Dimkpa, C. O., Fugice, J., Singh, U., & Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency – Trends and perspectives. Science of The Total Environment, 731, 139113. (accessed on 19 March, 2023).

Duttarganvi, S., Channabasavanna, A. S., Rao, S., & Halepyati, A. S. (2014). Effect of LCC and SPAD based nitrogen management on Growth and yield of low land rice (Oryza sativa L.). The Bioscan, 9(2), 663–665.

Fageria, N. K., Slaton, N. A., & Baligar, V. C. (2003). Nutrient management for improving lowland rice productivity and sustainability. Advances in agronomy, 80(1), 63-152.

Gautam, N., Ghimire, S., Kafle, S., & Dawadi, B. (2024). Efficacy of bio-fertilizers and chemical fertilizers on growth and yield of cowpea varieties. Technology in Agronomy, 0(0), 1–10.

Ghimire, S., Dhami, D., Shrestha, A., Budhathoki, J., Maharjan, M., Kandel, S., & Poudel Chhetri, B. (2023). Effectiveness of different combinations of urea and vermicompost on yield of bitter gourd (Momordica charantia). Heliyon, 9(8), e18663.

Ghimire, S., Neupane, S., & Tharu, R. K. (2023). Comparative Study on the Seed Health of Five Commonly Cultivated Wheat Varieties (Triticum aestivum L.) in Nepal. AgroEnvironmental Sustainability, 1(1), 3–11.

Ghimire, S., Poudel Chhetri, B., & Shrestha, J. (2023). Efficacy of different organic and inorganic nutrient sources on the growth and yield of bitter gourd (Momordica charantia L.). Heliyon, e22135.

Ghimire, S., & Rauniyar, U. K. (2023). Economic Analysis of Acid Lime Production and Marketing in Nepal: A Benefit-Cost Perspective from Nawalpur East District. Journal of Agriculture and Environment for International Development (JAEID), 117(2), 5–22.

Hasanuzzaman, M., Fujita, M., Filho, M. C. M. T., Nogueira, T. A. R., & Galindo, F. S. (2020). Sustainable Crop Production. BoD – Books on Demand, 1-338.

Houba, J., van Der Lee, J., Novozamsky, I., & Walinga, I. (1989). Soil and Plants Analysis. In Part 5, Soil Analysis Procedures. Wageningen University. (accessed on 3 February, 2023).

Iqbal, M., Umar, S., & Mahmooduzzafar. (2019). Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants. In A. Husen & M. Iqbal (Eds.), Nanomaterials and Plant Potential (pp. 473–505). Springer International Publishing.

Javed, T., I, I., Singhal, R. K., Shabbir, R., Shah, A. N., Kumar, P., Jinger, D., Dharmappa, P. M., Shad, M. A., Saha, D., Anuragi, H., Adamski, R., & Siuta, D. (2022). Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. Frontiers in Plant Science, 13, 877544.

Kim, D.-Y., Kadam, A., Shinde, S., Saratale, R. G., Patra, J., & Ghodake, G. (2018). Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. Journal of the Science of Food and Agriculture, 98(3), 849–864.

Krishnakumar, S., & Haefele, S. (2013). Integrated nutrient management and LCC based nitrogen management on soil fertility and yield of rice (Oryza Sativa L.). Scientific Research and Essays, 8(41), 2059–2067.

Lee, S. (2021). Recent Advances on Nitrogen Use Efficiency in Rice. Agronomy, 11(4), 753, 1-17. (accessed on 17 November, 2023).

Lin, D.-X., Fan, X.-H., Hu, F., Zhao, H.-T., & Luo, J.-F. (2007). Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China. Pedosphere, 17(5), 639–645.

Maiti, D., Das, D. K., Karak, T., & Banerjee, M. (2004). Management of Nitrogen Through the Use of Leaf Color Chart (LCC) and Soil Plant Analysis Development (SPAD) or Chlorophyll Meter in Rice Under Irrigated Ecosystem. The Scientific World JOURNAL, 4, 838–846.

Midde, S. K., Perumal, M., Murugan, G., Sudhagar, R., Sai, V., & Reddy, B. (2022). Evaluation of Nano Urea on Growth and Yield Attributes of Rice (Oryza sativa L.). 211–214.

MoALD. (2022). Statistical Information On Nepalese Agriculture, 2021/22 (p. 274). Government of Nepal, Ministry of Agriculture and Livestock Development, Planning & Development Cooperation Coordination Division, Statistics and Analysis Section. (accessed on 19February, 2023).

Mozaffari, H., Moosavi, A. A., Baghernejad, M., & Cornelis, W. (2024). Revisiting soil texture analysis: Introducing a rapid single-reading hydrometer approach. Measurement, 228, 114330.

NASA. (2023). NASA Prediction of Worldwide Energy Resources- The Power Project. /api/temporal/daily/point?parameters=QV2M,RH2M,PRECTOTCORR,T2M,T2MDEW,T2MWET,TS,T2M_RANGE,T2M_MAX,T2M_MIN,ALLSKY_SFC_LW_DWN&community=AG&longitude=83.5756&latitude=27.5523&start=20230101&end=20240308&format=CSV. (accessed on 15 August, 2023).

Nasiruddin, M., & Roy, R. C. (2012). Rice Field Insect Pests During the Rice Growing Seasons in Two Areas Of Hathazari, Chittagong. Bangladesh Journal of Zoology, 40(1), 89–100.

Pan, J., Liu, Y., Zhong, X., Lampayan, R. M., Singleton, G. R., Huang, N., Liang, K., Peng, B., & Tian, K. (2017). Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agricultural Water Management, 184, 191–200.

Papademetriou, M. K., Fao, B., Dent, F. J., & Herath, E. M. (2000). Rice production in the Asia-Pacific region: Issues and perspectives. Bangkok (Thailand) FAO. (accessed on 20 February, 2023).

Pratt, P. F. (2016). Potassium. In A. G. Norman (Ed.), Agronomy Monographs (pp. 1022–1030). American Society of Agronomy, Soil Science Society of America. (accessed on 20 March, 2023).

Puteh, A. B., Mondal, M. M. A., Ismail, Mohd. R., & Latif, M. A. (2014). Grain Sterility in relation to Dry Mass Production and Distribution in Rice ( Oryza sativa L.). BioMed Research International, 2014, 1–6.

Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. The Scientific World Journal, 2014, e925494.

Sahu, S. K., & Samant, P. K. (2006). Nitrogen Loss from Rice Soils in Orissa. Orissa Review, 67. (accessed on 5 February, 2023).

Sahu, T. K., Kumar, M., Kumar, N., Chandrakar, T., & Singh, D. (2022). Effect of nano urea application on growth and productivity of rice (Oryza sativa L.) under the midland situation of Bastar region. The Pharma Innovation Journal 2022, 11(6), 185–187.

Sathiya, K., & Ramesh, T. (2009). Effect of split application of nitrogen on growth and yield of aerobic rice. Asian Journal of Experimental Sciences, 23(1), 303–306.

Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants, 10(1), 2, 1-27.

Shahidullah, S. M., Hanafi, M. M., Ashrafuzzaman, M., Ismail, M. R., & Salam, M. A. (2009). Tillering dynamics in aromatic rice genotypes. International Journal of Agriculture and Biology, 11(5), 509–514.

Shrestha, S., Shrestha, J., Kc, M., Paudel, K., Dahal, B., Mahat, J., Ghimire, S. M., & Ghimire, P. (2022). Performance of spring rice cultivars against planting methods in Western Terai, Nepal. Tropical Agroecosystems, 3(1), 23–26.

Shukla, A. K., Ladha, J. K., Singh, V. K., Dwivedi, B. S., Balasubramanian, V., Gupta, R. K., Sharma, S. K., Singh, Y., Pathak, H., Pandey, P. S., Padre, A. T., & Yadav, R. L. (2004). Calibrating the Leaf Color Chart for Nitrogen Management in Different Genotypes of Rice and Wheat in a Systems Perspective. Agronomy Journal, 96(6), 1606–1621.

Singh, B., Singh, V., Singh, Y.-S., Kumar, A., Singh, J., Vashistha, M., Thind, H., & Gupta, R. (2016). Fertilizer Nitrogen Management in Irrigated Transplanted Rice Using Dynamic Threshold Greenness of Leaves. Agricultural Research, 5, 174-181.

Subedi, S., Sharma, S., Poudel, A., Adhikari, S., VKC, Subedi, S., Sharma, S., Poudel, A., Adhikari, S., & VKC. (2018). Varietal Evaluation and Preference Analysis of Promising Spring Rice Genotypes in Dhamilikuwa, Lamjung, Nepal. Open Journal of Plant Science, 3(1), 015–017.

Timilsina, S., Poudel, A., Timilsina, A., & Vista, S. (2018). Performance of Cold tolerant rice (Lumle-2) under different levels of nitrogen application at hill condition of Nepal. 29, 483–489.

Upadhyay, P. K., Dey, A., Singh, V. K., Dwivedi, B. S., Singh, T., G. A., R., Babu, S., Rathore, S. S., Singh, R. K., Shekhawat, K., Rangot, M., Kumar, P., Yadav, D., Singh, D. P., Dasgupta, D., & Shukla, G. (2023). Conjoint application of nano-urea with conventional fertilizers: An energy efficient and environmentally robust approach for sustainable crop production. PLOS ONE, 18(7), e0284009.

Vejan, P., Khadiran, T., Abdullah, R., & Ahmad, N. (2021). Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release, 339, 321–334.

Watanabe, F. S., & Olsen, S. R. (1965). Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO 3 Extracts from Soil. Soil Science Society of America Journal, 29(6), 677–678.

Yadav, M. R., Kumar, R., Parihar, C. M., Yadav, R. K., Jat, S. L., Ram, H., Meena, R. K., Singh, M., . B., Verma, A. P., Ghoshand, A., & Jat, M. L. (2017). Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews, 38(1), 29-40.

Yadvinder-Singh, Bijay-Singh, Ladha, J. K., Bains, J. S., Gupta, R. K., Jagmohan-Singh, & Balasubramanian, V. (2007). On-farm evaluation of leaf color chart for need-based nitrogen management in irrigated transplanted rice in northwestern India. Nutrient Cycling in Agroecosystems, 78(2), 167–176.




How to Cite

Bhatt, H., Ghimire, S., Paudel, S., & Bashyal, M. (2024). Response of spring rice (Oryza sativa L.) varieties to different nitrogen application methods at Nawalparasi West, Nepal. Turkish Journal of Agriculture - Food Science and Technology, 12(4), 631–643.



Research Paper

Most read articles by the same author(s)