Effects of 5-Aminolevulinic Acid (5-ALA) on Morphological and Physiological Characteristics of Grapevine against Salt Stress

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i4.575-585.6711

Keywords:

5-aminolevulinic acid (5-ALA), 41 B, American grapevine rootstock, NaCl, salinity stress

Abstract

Salinity, one of the most significant abiotic stress factors restricting plant production, causes the destruction of agricultural lands and reduces productivity. In recent years, the utilization of 5-aminolevulinic acid (5-ALA) applications, which have important effects in terms of avoiding and providing tolerance to factors by impacting the physiology and metabolism of the plants, has been on the agenda. In this research, the impacts of foliar treatments of different levels of 5-ALA (0, 0.3, 0.6 and 0.9 mM) on morphological and physiological traits of 41 B American grapevine rootstocks under salinity stress (NaCl solution starting with 25 mM and reaching 150 mM concentration) were investigated. Salinity stress caused significant decreases in growth parameters, chlorophyll content, RWC and stomatal conductance, and significant increases in leaf temperature, proline and MDA content, physical damage and membrane damage degree. Under salinity stress, 0.9 mM 5-ALA treatments resulted in significant increases in shoot length (14.67 cm), root length (34.50 cm), leaf thickness (0.23 µm) leaf area (31.37 cm2), leaf number (8.67 pieces), chlorophyll content (21.83 SPAD), RWC (80.20%), proline content (0.19 μmol.g-1) and stomatal conductance (78.05 mmol.m-2.s-1); and significant decreases in physical damage degree (1.00 scale degree), membrane injury degree (15.46%) and MDA content (28.20 nmol.g-1) compared to non-ALA treatments. According to the results of this study, 5-ALA can be recommended as an alternative application to provide salinity tolerance in plants in order to reduce the damage caused by salinity stress in agricultural lands.

References

Baby, T., Collins, C., Tyerman, S. D., & Gilliham, M. (2016). Salinity negatively affects pollen tube growth and fruit set in grapevines and is not mitigated by silicon. American Journal of Enology and Viticulture, 67, 218–228. https://doi.org/10.5344/ajev.2015.15004

Baneh, H. D., Hassani, A., & Shaieste, F. G. (2014). Effects of salinity on leaf mineral composition and salt injury symptoms of some Iranian wild grapevine (Vitis vinifera L. ssp. Sylvestris) Genotypes. Journal International des Sciences de la Vigne et du Vin, 48, 231–235. https://doi.org/10.20870/oeno-one.2014.48.4.1692

Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/bf00018060

Çelik, H. (1996). Bağcılıkta anaç kullanımı ve yetiştiricilikteki önemi. Anadolu Dergisi, 6(2), 127-48.

Charrier, G., Delzon, S., Domec, J. C., Zhang, L., Delmas, C. E. L., Merlin, I., Corso, D., King, A., Ojeda, H., Ollat, N., Prieto, J. A., Scholach, T., Skinner, P., van Leeuwen, C., & Gambetta, G. A. (2018). Drought will not leave your glass empty: low risk of hydraulic failure revealed by long-term drought observations in world’s top wine regions. Science Advances, 4, eaao6969. https://doi.org/10.1126/sciadv.aao6969

Coombe, B. G. (1995). Adoption of a system of identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104-110.

Downton, W. J. S. (1983). Osmotic adjustment during water stress protects the photosynthetic apparatus against photoinhibition. Plant Science Letters, 30, 137–143. https://doi.org/10.1016/0304-4211(83)90212-2

Downton, W. J. S., Loveys, B. R., & Grant, W. J. R. (1990). Salinity effects on the stomatal behaviour of grapevine. New Phytologist, 116, 499–503. https://doi.org/10.1111/j.1469-8137.1990.tb00535.x

Fozouni, M., Abbaspour, N., & Doulati Baneh, H. (2012). Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. VITIS - Journal of Grapevine Research, 51, 147–152.

Genişel, M., & Erdal, S. (2016). Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings. AIP Conference Proceedings, 1726, 020025. https://doi.org/10.1063/1.4945851

Geravandi, M., Farshadfar, E., & Kahrizi, D. (2011). Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology, 58(1), 69-75. https://doi.org/10.1134/S1021443711010067

Gregory, P. J., Ismail, S., Razaq, I. B., & Wahbi, A. (2018). Soil salinity: current status and in-depth analyses for sustainable use Chapter 2. IAEA-TECDOC--1841 (pp. 1-123). International Atomic Energy Agency (IAEA).

Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455–467. https://doi.org/10.1016/j.envexpbot.2019.03.022

Hajkowicz, S., & Young, M. (2005). Costing yield loss from acidity, sodicity and dryland salinity to Australian agriculture. Land Degradation and Development, 16, 417–433. https://doi.org/10.1002/ldr.670

Hannah, L., Roehrdanz, P. R., Ikegami, M., Shepard, A. V., Shaw, M. R., Tabor, G., Zhi, L., Marquet, P. A., & Hijmans, R. J. (2013). Climate change, wine, and conservation. Proceedings of the National Academy of Sciences (PNAS), 110, 6907–6912. https://doi.org/10.1073/pnas.1210127110

Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., & Konnai, M. (1997a). Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation, 22(2), 109-114. https://doi.org/10.1023/A:1005883930727

Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., & Konnai, M. (1997b). New physiological effects of 5-aminolevulinic acid in plants: the increase of phtosynthesis, chlorophyll content, and plant growth. BioScience, 61(12), 2025-2028. https://doi.org/10.1271/bbb.61.2025

Hotta, Y., Tanaka, T., Bingshan, L., Takeuchi, Y., & Konnai, M. (1998). Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. Pesticide Science, 23(1), 29-33. https://doi.org/10.1584/jpestics.23.29

Korkmaz, A. (2012). Effects of exogenous application of 5-aminolevulinic acid in crop plants. Agricultural and Food Science, 215-234. https://doi.org/10.1007/978-1-4614-0634-1_12

Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M.A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in silene. South African Journal of Botany, 117, 193-206. https://doi.org/10.1016/j.sajb.2018.05.022

Kumar, D., Al Hassan, M., Naranjo, M.A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS One, 12, 0185017. https://doi.org/10.1371/journal.pone.0185017

Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398. https://doi.org/10.1006/anbo.1996.0134

Maas, V. E., & Hoffman, G. J. (1977). Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Division, 103, 115–134. https://doi.org/10.1061/JRCEA4.0001137

Manafi, E., Modarres Sanavy, S. A. M., Aghaalıkhani, M., & Dolatabadian, A. (2015). Exogenous 5-aminolevulenic acid promotes antioxidative defence system, photosynthesis and growth in soybean against cold stress. Notulae Scientia Biologicae, 7(4), 486-494. https://doi.org/10.15835/nsb749654

Meggio, F., Prinsi, B., Negri, A. S., Simone Di Lorenzo, G., Lucchini, G., Pitacco, A., Failla, O., Scienza, A., Cocucci, M., & Espen, L. (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20, 310-323. https://doi.org/10.1111/ajgw.12071

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla, B. J., Bose, J., Byrt, C. S., Chen, Z. H., Foster, K. J., Gilliham, M., Henderson, S. W., Jenkins, C. L. D., Kronzucker, H. J., Miklavcic, S. J., Plett, D., Roy, S. J., Shabala, S., Shelden, M. C., Soole, K. L., Taylor, N. L., Tester, M., Wege, S., Wegner, L. H., & Tyerman, S. D. (2020). Energy costs of salt tolerance in crop plants. New Phytologist, 225, 1072–1090. https://doi.org/10.1111/nph.15864

Naeem, M. S., Jin, Z. L., Wan, G. L., Liu, D., Liu, H. B., Yoneyama, K., & Zhou, W. (2010). 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant and Soil, 332, 405–415. https://doi.org/10.1007/s11104-010-0306-5

Naeem, M. S., Rasheed, M., Liu, D., Jin, Z. L., Ming, D. F., Yoneyama, K., Takeuchi, Y., & Zhou, W. (2011). 5-aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiologiae Plantarum, 33, 517–528. https://doi.org/10.1007/s11738-010-0575-x

Nayyar, H. (2003). Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany, 50(3), 253-264. https://doi.org/10.1016/S0098-8472(03)00038-8

Nishihara, E., Kondo, K., Masud Parvez, M., Takahashi, K., Watanabe, K., & Tanaka, K. (2003). Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). Plant Physiology, 160(9), 1085-1091. https://doi.org/10.1078/0176-1617-00991

Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) Exposed to Oxidative Stress by H2O2. Scientia Horticulturae, 119, 163–168. https://doi.org/10.1016/j.scienta.2008.07.031

Phogat, V., Pitt, T., Stevens, R. M., Cox, J. W., Šimůnek, J., & Petrie, P. R. (2020). Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. Journal of Hydrology, 587, 125000. https://doi.org/10.1016/j.jhydrol.2020.125000

Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R., Drechsel, P., & Noble, A. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295. https://doi.org/10.1111/1477-8947.12054

Scheer, H. (2004). Chlorophylls and carotenoids. In W. J. Lennarz & M. D. Lane (Eds.), Encyclopedia of biological chemistry (pp. 430-437). Elsevier. https://doi.org/10.1016/B0-12-443710-9/00110-1

Shen, B., Hohmann, S., Jensen, R. G., & Bohnert, H. J. (1999). Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology, 121, 45–52. https://doi.org/10.1104/pp.121.1.45

Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science and Bio/Technology, 14, 407–426. https://doi.org/10.1007/s11157-015-9372-8

Sivritepe, N., & Eriş, A. (1999). Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23, 473–485.

Stevens, R. M., Harvey, G., & Partington, D. L. (2011). Irrigation of grapevines with saline water at different growth stages: Effects on leaf, wood and juice composition. Australian Journal of Grape and Wine Research, 17, 239–248. https://doi.org/10.1111/j.1755-0238.2011.00145.x

Tan, S., Cao, J., Xia, X., & Li, Z. (2022). Advances in 5-aminolevulinic acid priming to enhance plant tolerance to abiotic stress. International Journal of Molecular Sciences, 23(2), 702. https://doi.org/10.3390/ijms23020702

Tang, X. Q., Wang, Y., Lv, T. T., & Xiao, Y. H. (2016). Role of 5-aminolevulinic acid on growth, photosynthetic parameters and antioxidant enzyme activity in NaCl-stressed Isatis indigotica Fort. Russian Journal of Plant Physiology, 64(2), 198–206. https://doi.org/10.1134/S1021443717020121

Tate, A. B. (2001). Global warming’s impact on wine. Journal of Wine Research, 12, 95–109. https://doi.org/10.1080/09571260120095012

Tavallali, V., Jandoust, S., & Mehrjerdi, A. A. (2019). Foliar application of 5-aminolevulinic acid promotes bioactive compounds and nutritional value of purslane, a potential vegetable for the future. Journal of Applied Botany and Food Quality, 92, 25-32. https://doi.org/10.5073/JABFQ.2019.092.004

Walker, R. R., Torokfalvy, E., Scott, N. S., & Kriedemann, P. E. (1981). An analysis of photosynthetic response to salt treatment in Vitis vinifera. Functional Plant Biology, 8, 359–374. https://doi.org/10.1071/PP9810359

Wang, L. J., Jiang, W. B., & Huang, B. J. (2004). Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiologia Plantarum, 121, 258–264. https://doi.org/10.1111/j.0031-9317.2004.00319.x

Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., & Takeuchi, Y. (2000). improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regulation, 32, 97-101. https://doi.org/10.1023/A:1006369404273

Watanabe, K., Nishihara, E., Watanabe, S., Tanaka, T., Takahashi, K., & Takeuchi, Y. (2006). Enhancement of growth and fruit maturity in 2-year old grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regulation, 49, 35-42. https://doi.org/10.1007/s10725-006-0024-4

Wongkanthakorn, N., Sunohara, Y., & Mutsumoto, H. (2009). Mechanism of growth amelioration of NaCl-stressed rice (Oryza sativa L.) by δ-aminolevulinic acid. Journal of Pesticide Science, 34, 89-95. https://doi.org/10.1584/jpestics.G08-43

Xiong, B., Gong, Y., Yang, Y., Han, Y., Deng, L., & Tan, L. (2020). Effects of 5-ALA on fruit quality of blueberry cultivated in different modes. Environmental Earth Sciences, 474, 032024. https://doi.org/10.1088/1755-1315/474/3/032024

Xu, L., Islam, F., Zhang, W.F., Ghani, M.A., & Ali, B. (2018). 5-aminolevulinic acid alleviates herbicide-induced physiological and ultrastructural changes in Brassica napus. Journal of Integrative Agriculture, 17, 579–592. https://doi.org/10.1016/S2095-3119(17)61676-9

Yamasaki, S., & Dillenburg, L.C. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11, 69-75.

Yang, H., Zhang, J., Zhang, H., Xu, Y., An, Y., & Wang, L. (2021). Effect of 5-aminolevulinic acid (5-ALA) on leaf chlorophyll fast fluorescence characteristics and mineral element content of Buxus megistophylla grown along urban roadsides. Horticulturae, 7, 95. https://doi.org/10.3390/horticulturae7050095

Yang, Z., Chang, Z., Su, L., Yu, J., & Huang, B. (2014). Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PLoS One, 9(12), e116283. https://doi.org/10.1371/journal.pone.0116283

Youssef, T., & Awad, M. A. (2008). Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. Journal of Plant Growth Regulation, 27, 1–9. https://doi.org/10.1007/s00344-007-9025-4

Yuanchun, M., Wang, J., Zhong, Y., Geng, F., Cramer, G. R., & Cheng, Z. M. M. (2015). Sub functionalization of Cation/Proton Antiporter 1 genes in grapevine in response to salt stress in different organs. Horticulture Research, 2, 1-9. https://doi.org/10.1038/hortres.2015.31

Zhang, Z. J., Li, H. Z., Zhou, W. J., Takeuchi, Y., & Yoneyama, K. (2006). Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regulation, 49(1), 27-34. https://doi.org/10.1007/s10725-006-0011-9

Zhou-Tsang, A., Wu, Y., Henderson, S. W., Walker, A. R., Borneman, A. R., Walker, R. R., & Gilliham, M. (2021). Grapevine salt tolerance. Australian Journal of Grape and Wine Research, 27(2), 149-168. https://doi.org/10.1111/ajgw.12487

Downloads

Published

29.04.2024

How to Cite

Daler, S., & Özkol, Y. (2024). Effects of 5-Aminolevulinic Acid (5-ALA) on Morphological and Physiological Characteristics of Grapevine against Salt Stress. Turkish Journal of Agriculture - Food Science and Technology, 12(4), 575–585. https://doi.org/10.24925/turjaf.v12i4.575-585.6711

Issue

Section

Research Paper