Prediction of The Effect of Climate Change on Wheat Yield in Thrace Region
DOI:
https://doi.org/10.24925/turjaf.v11i5.933-945.6021Keywords:
Climate Change, Wheat, LINTUL Model, Yield Forecast, Thrace RegionAbstract
The aim of this study is to model the effect of climate change on the yield of wheat in Thrace Region. For this purpose, the 2020-2021 period wheat yield data taken from the farmer's field was calibrated by comparing it with the one calculated with the LINTUL model using the climate data of the same year and then yield values were estimated for the 2031-2040, 2041-2050, 2051-2060, 2061-2070 and 2071-2080 periods with the climate data obtained from the RCP4.5 and RCP8.5 scenarios of HadGEM2-ES and MPI-ESM-MR global climate models. Yield estimations were made in two ways without changing the sowing and harvest dates: In the first, yield calculations were made by considering the average lowest and highest temperature, solar radiation and precipitation change. In the second, while the solar radiation values were kept constant for the period 2004-2021, average minimum and maximum temperature and precipitation changes were taken into account. In the first approach, the estimated yield changes for the RCP4.5 and RCP8.5 scenarios of the HadGEM2-ES model were calculated between 1.5%-7.5% and -7.5%-7.5%, respectively, while for the MPI-ESM-MR model they were simulated between 9.0%-13.4% and 3.0%-16.4%in the same order. It was concluded that in yield estimations, the effect of solar radiation along with temperature and precipitation must be taken into account. For food security, the agricultural lands of the Thrace Region should not be used beyond their purposes since yield is forecasted to increase generally with climate change unlike other parts of Turkiye.
References
Altürk B, Bakanoğulları F, Konukcu F, Albut, S. 2019. TR21 Trakya Bölgesi’nde iklim değişikliğinin ayçiçeği ve buğday verimine etkisinin modellenmesi. In: Konukcu F, Albut S, Altürk A (Ed). TR21 Trakya Bölgesinde iklim değişikliğinin etkileri ve uyum stratejileri. Namık Kemal Üniversitesi Yayınları No: 2.08-027-0030/A-I, 104-117. https://iklimdegisikligi.tekirdag.bel.tr/file/iklim_degisikligi_kitabi.pdf [Erişim tarihi 28 Şubat 2023].
Anonim. 2022a. Buğday Bülteni. https://www.tarimorman.gov.tr/ BUGEM/Belgeler/YATIRIMCI%20 REHBER%C4%B0/Bu %C4% 9Fday%20 May%C4%B1s%20B%C3%BClteni.pdf [Erişim tarihi 28 Şubat 2023].
Anonim. 2022b. Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m= TEKIRDAG [Erişim tarihi 11 Mart 2022].
Çaldağ B. 2009. Trakya Bölgesi’nin Tarımsal Meteorolojik Özelliklerinin Belirlenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 258 s, İstanbul.
Çaldağ B, Şaylan L. 2010. İklim değişikliğinin buğday verimine etkilerinin incelenmesi: Kırklareli örneği. İTÜ Dergisi, 9 (5): 107-112.
Çaylak O. 2015. İklim Değişikliğinin Buğday Bitkisinin Gelişimi Ve Verimine Olası Etkilerinin Bitki-İklim Simulasyon Modeli İle İncelenmesi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 68 s, İstanbul.
De Myttenaere A, Golden B, Le Grand B, Rossi F. 2016. Mean absolute percentage error for regression models. Neurocomputing, 192: 38-48. https://doi.org/10.1016/j.neucom.2015.12.114
Deveci H. 2015. Trakya Bölgesi’nde İklim Değişikliğinin Yüzey Su Kaynakları, Toprak Nemi Ve Bitki Verimine Etkisinin Modellenmesi. Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 210 s, Tekirdağ.
Deveci H. 2022. Estimation of wheat yield under combinations of different climate parameters with the LINTUL model in the Thrace region. 8th International Black Sea Coastline Countries Scientific Research Conference. August 29-30, 2022. Sofia, Bulgaria.
Deveci H, Konukcu F. 2022. Determining sensitivity to change in climate parameters in wheat product estimation with LINTUL model. II-International Conference on Global Practice of Multidisciplinary Scientific Studies. 26-28 July. Batumi, Georgia.
Ezui KS, Leffelaar, PA, Franke AC, Mando A, Giller KE. 2018. Simulating drought impact and mitigation in cassava using the LINTUL model. Field Crops Research, 219: 256-272. https://doi.org/10.1016/j.fcr.2018.01.033
Franke AC, Haverkort AJ, Steyn JM. 2013. Climate 1 change and potato production in contrasting South African agro-ecosystems 2. Assessing Risks and Opportunities of Adaptation Strategies. Potato Research, 56(1): 51–66. https://doi.org/10.1007/s11540-013-9229-x
Haverkort AJ, Verhagen A, Grashoff AC, Uithol P. WJ. 2004. Potato-zoning: a decision support system on expanding the potato industry through agro-ecological zoning using the LINTUL simulation approach. Decision Support Systems in Potato Production: Bringing Models to Practice. Wageningen Academic, Wageningen, 29-44.
Haverkort AJ, Franke AC, Engelbrecht FA, Steyn, JM. 2013. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on Land and Water Use Efficiencies. Potato Research, 56(1): 31–50. https://doi.org/10.1007/s11540-013-9230-4
Haverkort AJ, Franke AC, Steyn JM, Pronk AA, Caldiz DO, Kooman PL. 2015. A Robust potato model: LINTUL-potato-DSS. Potato Research, 58(4): 313-327. https://doi.org/10.1007/s11540-015-9303-7
Koç EM. 2011. İklim Değişikliğinin Tarıma Olası Etkilerinin WOFOST Bitki İklim Modeli İle Araştırılması. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 77 s, İstanbul.
Konukcu F, Deveci, H, Altürk B. 2020. Trakya Bölgesi’nde iklim değişikliğinin buğday verimine etkisinin AquaCrop ve WOFOST modeller ile tahmin edilmesi. Tekirdağ Ziraat Fakültesi Dergisi, 17 (1): 77-96. https://doi.org/10.33462/jotaf.593883
Kooman PL, Haverkort AJ. 1995. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. In Potato Ecology and Modelling of Crops Under Conditions Limiting Growth (pp. 41-59). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0051-9_3
Machakaire AT, Steyn JM, Caldiz DO, Haverkort AJ. 2016. Forecasting yield and tuber size of processing potatoes in South Africa using the LINTUL-potato-DSS model. Potato research, 59 (3): 195-206. https://doi.org/10.1007/s11540-016-9321-0
MetOffice 2022. HadGEM2 family: Met Office climate prediction model. https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/ climate -models/hadgem2 [Erişim tarihi 18 Şubat 2022].
Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models; part I-A discussion of principles; Journal of Hydrology; No. 10: 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Özdoğan M. 2011. Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture, ecosystems & environment, 141(1-2): 1-12. https://doi.org/10.1016/j.agee.2011.02.001
Süzer S. 2022. Buğday yetiştiriciliği. http://hayrabolutb.org.tr/media/ziraat/BugdayTarimi.pdf. [Erişim tarihi 18 Şubat 2022].
SYGM. 2016. İklim değişikliğinin su kaynaklarına etkisi projesi. Proje Nihai Raporu. Ankara: T.C. Tarım ve Orman Bakanlığı (Mülga Orman ve Su İşleri Bakanlığı) Su Yönetimi Genel Müdürlüğü (SYGM), 389 s, Ankara.
Van Haren RJF, Haverkort AJ. 1998. Agro-ecological description of LINTUL-POTATO: description and application of the LINTUL-POTATO crop growth model. In Information Technology as a Tool to Assess Land Use Options in Space and Time, Proceedings of an international Workshop Lima Peru (CIP, ICASA, PE, AB-DLO). Pp. 41-49.
Volta A, Villani G, Marletto V, Ceotto E. 2016. Growth of the perennial energy crop giant reed (Arundo donax L) Simulated with ARMIDA, a modified version of the LINTUL model. Revista Italiana di Agrometeorologia, 34: 5-12.
Willmott C, Matsuura K. 2005. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance, Clim. Res., 30: 79–82. https://doi.org/10.3354/cr030079
Wiertsema W. 2015. Obtaining Winter Wheat Parameters for LINTUL From A Field Experiment Comparing Old And Young Winter Wheat Varieties And Evaluating The Progress By Breeding. MSc thesis, Plant Production Systems, 96 p, Wageningen University.
Yagiz AK, Cakici M, Aydogan N, Omezli S, Yerlikaya BA, Ayten S, ... Haverkort AJ. 2020. Exploration of climate change effects on shifting potato seasons, yields and water use employing NASA and national long-term weather data. Potato Research, 63(4): 565-577. https://doi.org/10.1007/s11540-020-09457-x
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.