Determination of Morphological and Biochemical Responses of Some Cherry Rootstocks to Calcium Stress under In Vitro Conditions

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i9.1648-1655.6193

Keywords:

Antioxidant Enzymes, Calcium, In vitro, Sweet cherry rootstocks

Abstract

High calcium content in the soil is an important abiotic stress factor that limits the yield and survival of plants. While calcareous soils cover more than 30% of the land worldwide, the soils in almost all regions of our country, except for the Black Sea region, have a high calcium content. Fruit species, including cherries, are generally highly sensitive to high calcium content. In this context, the presence of rootstocks that provide tolerance to high calcium content in fruit cultivation and the determination of the tolerance of existing rootstocks to calcium are of great importance. Therefore, this study aims to determine the morphological and biochemical responses of Mazzard, Mahaleb, MaxMa 14, CAP-6P, and PHL-C rootstocks, which were propagated under in vitro conditions, to different levels of calcium (Control, 1.0%, 3.0%, and 5.0% CaCO3). Under stress conditions, in addition to morphological characteristics such as plant height, root development, leaf area, plant fresh and dry weight, leaf relative water content, and membrane permeability, biochemical characteristics such as catalase, peroxidase, superoxide dismutase, hydrogen peroxide, proline, and protein content, as well as iron activities (iron content in plants, active iron content, iron chelate reductase activity in plants, and iron chelate activity in roots) were determined in stressed plants. In the experiment, it was determined that as the CaCO3 level increased in the medium, the tolerance of the rootstocks decreased. However, measurements taken on the 15th day of the experiment revealed that the MaxMa-14 cherry rootstock showed better growth compared to other cherry rootstocks.

References

Agarval S, Pandey V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48(4): 555-560. Doi: 10.1023/B: BIOP.00000471 52.07878.e7

Arıkan Ş, İpek M, Pırlak L. 2017. Antıoxıdant Systems. 1st International Turkish World Engineering and Science Congress in Antalya, Turkey, 7-10 December 2017, pp. 1089-1094.

Ashraf M, Foolad MR. 2007. Roles of glycine betaine ve proline in improving plant abiotic stress resistance. Envionmental ve Experimental Botany, 59: 206- 216. Doi: 10.1016/j.envexpbot.2005.12.006

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. Doi: 10.1007/BF00018060

Bienfait HE, Bino RJ, Vander Blick AM, Duivenvoorden JF, Fontaine FM. 1983. Charectarization of ferric reducing activity in roots of Fe-deficient Phasolus vulgaris. Physiol. Plant. 59:196-202. Doi: 10.1111/j.1399-3054.1983 .tb00757.x

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248- 254. Doi: 10.1016/0003-2697(76)90527-3

Carpena O. 1983. Dinamica de nutrientes en portainjertos de citrus. I Congreso Mundial de la Associacion de Viveiristas de Agrios. International Society of Citrus Nurserymen, Valencia, Spain.

Cinelli F, Fisichella M, Muleo R. 2003. Morpho-Physiological approaches to investigate lime-induced chlorosis in deciduous fruit tree species. Journal of Plant Nutrition, 26:2277-2294. Doi: 10.1081/PLN-120024281

Çırak C, Esendal E. 2006. Soyada Kuraklık Stresi. OMÜ Zir. Fak. Dergisi, 21(2): 231-237.

Demiral T, Türkan İ, 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Envionmental and Experimental Botany, 53: 247-257. Doi: 10.1016/j.envexpbot.2004.03.017

Donnini S, Castagna A, Ranieri A, Zocchi, G. 2009. Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of plant physiology, 166 (11), 1181-1193. Doi: 10.1016/j.jplph.2009.01.007

Donnini S, Dell'Orto M, Zocchi G. 2011. Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. Tree physiology, 31(1), 102-113. Doi: https://doi.org/10.1093/treephys/tpq105

Faust M. 1989. Physiology of Temperate Zone Fruit Trees. New York, USA: John Wiley & Sons, Inc. ISBN: 9780471817819

Gong Y, Toivonen PM, Lau O, Wiersma PA. 2001. Antioxidant system level in ‘Braeburn’ apple is related to its browning disorder. Botanical Bulletin of Academia Sinica 42:259–64.

Havir EA, McHale NA. 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology 84 (2):450–5. Doi: 10.1104/pp.84.2.450

Hepaksoy S, 2004. Bazı kiraz anaçlarının mikroçoğaltımı üzerinde araştırmalar I. gelişme ve çoğalma, Ege. Üniv. Ziraat Fak. Derg., 41: 11- 22.

İpek M. 2015. In vitro Şartlarda Garnem ve Myrobolan 29C Anaçlarının Kurak Stresine Karşı Tepkilerinin Belirlenmesi. Doktora Tezi. Fen Bilimleri Enstitüsü, Selçuk Üniversitesi, Konya, Türkiye

İpek M, Eşitken A. 2017. The Sctions of PGPR on Micronutrient Availability in Soil and Plant under Calcareous Soil Conditions: An Evaluation Over Fe Nutrition. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts, Springer, Singapore. pp: 81-100. ISBN: 978-981-10-6592-7 (Print) 978-981-10-6593-4 (Online)

İpek M, Pırlak L, Eşitken A, Dönmez MF, Şahin F. 2009. Kireçli Topraklarda Yetiştirilen Çilekte Bitki Büyümesini Artıran Bakterilerin (BBAB) Verim ve Gelişme Üzerine Etkileri. III. Ulusal Üzümsü Meyveler Sempozyumu, Kahramanmaraş, 10-12 Haziran 2009, pp.73-77.

Kalefetoğlu T, Ekmekçi Y. 2005. The effect of drought on plants and tolerance mechanisms, G. U. Journal of Science. 18(4): 723-740.

Kuşvuran Ş. 2010. Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar. Doktora Tezi. Fen Bilimleri Enstitüsü, Çukurova Üniversitesi, Adana, Türkiye.

Lutts S, Kinet JM, Bouharmont J. 1996. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regulation, 19: 207-218. Doi: 10.1007/BF00037793

Marschner H. 1995. Mineral Nutrition of Higher Plants. 2nd ed. London, UK: Academic Press. ISBN: 978-0-12-384905-2

Mertens D. 2005a. Official methods of analysis of AOAC International. 922.02. Plants Preparation of Laboratory Sample. Official Methods of Analysis, 18th edn. Horwitz, W., and G.W. Latimer, (Eds). Chapter 3, pp. 1-2, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA.

Mertens, D. 2005b. Official methods of analysis of AOAC International. 975.03. Metal in Plants and Pet Foods. Official Methods of Analysis, 18th edn. Horwitz, W., and G.W. Latimer, (Eds). Chapter 3, pp 3-4, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA.

Molassiotis AN, Diamantidis GC, Therios IN, Tsirakoglou V, Dimassi KN. 2005. Oxidative stress, antioxidant activity and Fe (III)-chelate reductase activity of five Prunus rootstocks explants in response to Fe deficiency. Plant growth regulation. 46, 69-78. Doi: 10.1007/s10725-005-6396-z

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x

Ruzic D, Saric M, Cerovic R, Culafic L. 2000. Relationship between the concentration of macroelements, their uptake and multiplication of cherry rootstock Gisela 5 in vitro. Plant Cell, Tissue and Organ Culture, 63: 9-14. Doi: 10.1023/A:1006412901992

Sanchez FJ, Andres EF, Tenorio JL, Ayerbe L. 2004. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research, 86: 81-90. Doi: 10.1016/S0378-4290(03)00121-7

Takkar PN, Kaur NP. 1984. HCl method for Fe+2 estimation to resolve iron chlorosis in plants. J. Plant Nutr., 7(1-5): 81-90. Doi: 10.1080/01904168409363176

Thomidis T, Tsipouridis C. 2005. Influence of rootstocks, pH, iron supply (in nutrient solutions) and Agrobacterium radiobacter on chlorophyll and iron concentration in leaves of a peach variety. Journal of plant nutrition, 28(10), 1833-1842. Doi: 10.1080/01904160500251241

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science 151 (1):59–66. Doi: 10.1016/S0168-9452(99)00197-1

Vose PB. 1983. Rationale of selection for specific nutritional characters in crop improvement with Phaseolus vulgaris L. As a Case of Study. Plant and Soil, 72: 351-364. Doi: 10.1007/BF02181973

Wertheim SJ, Webster AD. 2005. Rootstocks and interstems. In Fundamentals of Temperate Zone Tree Fruit Production, eds. J. Tromp, A.D. Webster, and S.J. Wertheim, 156-175. Leiden: Buckhuys Publ. ISBN: 0-90-5782-152-4

Yardanova RY, Christov KN, Papova LP. 2004. Antroxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot. 51: 93-101. Doi: 10.1016/S0098-8472(03)00063-7

Ye GN, Colburn SM, Xu CW, Hajdukiewicz PTJ, Staub JM. 2003. Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance. Plant Physiology, 133: 402-410. Doi: 10.1104/pp.103.021949

Downloads

Published

30.09.2023

How to Cite

İpek, M., Arıkan, Şeyma, Pırlak, L., Eşitken, A., & Şahin, M. (2023). Determination of Morphological and Biochemical Responses of Some Cherry Rootstocks to Calcium Stress under In Vitro Conditions. Turkish Journal of Agriculture - Food Science and Technology, 11(9), 1648–1655. https://doi.org/10.24925/turjaf.v11i9.1648-1655.6193

Issue

Section

Research Paper