Bioactive Compounds and Industrial Peeling Applications of Inner and Outer Shells of Chestnuts (Castanea spp.)

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i4.726-738.6627

Keywords:

Bioactive compounds, Castanea spp., industrial peeling, Chestnut , Shell

Abstract

The aim of this review is to provide information concerning the types of chestnut shells (inner and outer), their compositions and bioactive compounds, as well as to mention industrial peeling applications. These shells are comprised of high-valued natural active compounds, such as polyphenols (phenolic acids, flavonoids, tannins, hydroxycoumarins -scopoletin, scoparone-), pigments (melanin) and minor compounds (minerals, dietary fiber, vitamin C and E, essential amino acids and fatty acids). The total phenolic acids and flavonoid content of C. sativa shell were ranged between 119.17-223.62 mg/kg db and 330 – 503 mg CE/g. It is also a good source of vitamin C with reported levels of 15.57 and 28.97 mg AA/100 mg db in water and ethanol extracts, respectively. The shells are used as food additives due to their colorant, antioxidant and antimicrobial properties. The shells are exposed by the peeling process applied to obtain the fruit without the shell which is mainly used. The most frequently used technique in chestnut peeling is the Brulage peeling method. However, in this technique, used peeling mechanism is insufficient to obtain both inner and outer shells separately at the same time. Moreover, further research is needed to obtain the shells individually, to analyse each shell in detail, and to increase the industrial use of shells.

References

Acar, J., & Gökmen, V. (2014). Fenolik bileşikler ve doğal renk maddeleri. In İ. Saldamlı (Ed.), Gıda Kimyası (4th ed., pp. 557-589). Ankara.

Aires, A., Carvalho, R., & Saavedra, M. J. (2016). Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Management, 48, 457-464. http://doi.org/10.1016/j. wasman.2015.11.019

Al-Mufarrej, S. I., Hassib, A. M., & Hussein, M. F. (2006). Effect of melanin extract from black cumin seeds (Nigella sativa L.) on humoral antibody response to sheep red blood to cells in albino rats. Journal of Applied Animal Research, 29, 37-41. https://doi.org/10.1080/09712119.2006.9706567

Anagnostakis, S. L. (2010). Identification of chestnut trees. The Connecticut Agricultural Experiment Station. https://www. mobot.org/plantscience/resbot/Ches/AnagnostakisIdent2010.pdf

Anonymous, (2003). Oligomeric Proanthocyanidins (OPCs). http://www.altmedrev.com/archive/publications/8/4/442.pdf

Barreira, J. C. M., Alves, R. C., Casal, S., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2009). Vitamin E Profile as a Reliable Authenticity Discrimination Factor between Chestnut (Castanea sativa Mill.) Cultivars. Journal of Agricultural and Food Chemistry, 57, 5524-5528. https://doi.org/10.1021/jf900435y

Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2008). Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chemistry, 107, 1106-1113. https://doi.org/10.1016/j.foodchem.2007.09. 030

Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2010). Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Science and Technology International, 16, 209-216. https://doi.org/10.1177/1082013209353983

Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58, 173-181. https://doi.org/10.1016/j.aoas.2013.07.002

Blaiotta, G., La Gatta, B., Di Capua, M., Di Luccia, A., Coppola, R., & Aponte, M. (2013). Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Food Microbiology, 36, 161-169. https://doi.org/10.1016/j. fm.2013.05.002

Cacciola, N. A., Squillaci, G., D'Apolito, M., Petillo, O., Veraldi, F., La Cara, F., Peluso, G., Margarucci, S., & Morana, A. (2019). Castanea sativa Mill. shells aqueous extract exhibits anticancer properties inducing cytotoxic and pro-apoptotic effects. Molecules, 24(18), e3401. https://doi.org/10.3390/ molecules24183401

Cerulli, A., Napolitano, A., Masullo, M., Hošek, J., Pizza, C., Piacente, S. (2020). Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC_HRMS/MSn rationalization of tannins. Food Research International, 129(Mar), Article e108787. https://doi.org/10.1016/j.foodres.2019.108787

Chen, S. J., Qi, J. H., Pang, M. X., & Wang, F. (2018). Optimization of extraction of pigment from chestnut shell using response surface methodology. IOP Conference Series: Earth and Environmental Science, 199, 042009. https://doi.org/10.1088/17551315/199/4/042009

Chen, S. R., Jiang, B., Zheng, J. X., Xu, G. Y., Li, J. Y., & Yang, N. (2008). Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chemistry, 111(3), 745-749. https://doi.org/10.1016/ j.foodchem.2008.04.053

Crozier, A., Jaganath, I. B., & Clifford, M. N. (2006). Phenols, Polyphenols and Tannins: An Overview. In A. Crozier, M. N. Clifford & H. Ashihara (Eds.), Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet (1st ed., pp. 1-24). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470988558

Cruz-Lopes, L. P., Domingos, I., Ferreira, J., & Esteves, B. (2020). Chemical composition and study on liquefaction optimization of chestnut shells. Open Agriculture, 5(1), 905-911. https://doi.org/10.1515/opag-2020-0089

Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. https://doi.org/10.3390/ molecules15107313

de Vasconcelos, M. D. B. M., Bennett, R. N., Quideau, S., Jacquet, R., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010c). Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Industrial Crops and Products, 31, 301-311. https://doi.org/10.1016/j. indcrop.2009.11.008

de Vasconcelos, M. D. B. M., Bennett, R. N., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010a). Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. Journal of the Science of Food and Agriculture, 90, 1578-1589. https://doi.org/10. 1002/jsfa.4016

de Vasconcelos, M. D. B. M., Nunes, F., Viguera, C. G., Bennett, R. N., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010b). Industrial processing effects on chestnut fruits (Castanea sativa Mill.) 3. Minerals, free sugars, carotenoids and antioxidant vitamins. International Journal of Food Science and Technology, 45(3), 496-505. https://doi.org/10. 1111/j.13652621.2009.02155.x

Demirkesen, I., Mert, B., Sumnu, G., & Sahin, S. (2010). Utilization of chestnut flour in gluten-free bread formulations. Journal of Food Engineering, 101(3), 329-336. https://doi.org/10.1016/j.jfoodeng.2010.07.017

Di Monaco, R., Miele, N. A., Cavella, S., & Masi, P. (2010). New chestnut-based chips optimization: Effects of ingredients. LWT-Food Science and Technology, 43(1), 126-132. https://doi.org/10.1016/j.lwt.2009.07.005

Echegaray, N., Gomez, B., Barba, F. J., Franco, D., Estevez, M., Carballo, J., Marszalek, K., & Lorenzo, J. M. (2018). Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends in Food Science & Technology, 82, 110-121. https://doi.org/10. 1016/j.tifs.2018.10.005

Enochs, W. S., Nilges, M. J., & Swartz, H. M. (1993). A standardized test for the identification and characterization of melanins using electron-paramagnetic-resonance (EPR) spectroscopy. Pigment Cell Research, 6, 91-99. https://doi. org/10.1111/j.1600-0749.1993.tb00587.x

Food and Agriculture Organization. (2023). FAOSTAT (database). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QC

Gan, R.-Y., Chan, C.-L., Yang, Q.-Q., Li, H.-B., Zhang, D., Ge, Y.-Y., Gunaratne, A., Ge, J., & Corke, H. (2019). Bioactive compounds and beneficial functions of sprouted grains. In H. Feng, B. Nemzer & J. W. DeVries (Eds.), Sprouted Grains: Nutritional Value, Production, and Applications (pp. 191-246). Elsevier Inc. https://doi.org/10.1016/C2016-0-01536-X

Gao, X., Han, M. M., Zhang, X. Y., Cai, Z. Y., Wang, F., Pang, M. X., & Qi, J. H. (2019). Study on chemical properties of chestnut shell pigment. IOP Conference Series: Earth and Enviromental Science, 371, 042049. https://doi.org/10.1088/1755-1315/371/4/042049

Goncalves, B., Borges, O., Costa, H. S., Bennett, R., Santos, M., & Silva, A. P. (2010). Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fibre, organic acids and phenolics. Food Chemistry, 122, 154-160. https://doi.org/10.1016/j.foodchem.2010.02.032

Gullón, P., Eibes, G., Dávila, I., Moreira, M. T., Labidi, J., & Gullón, B. (2018). Manufacture of nutraceutical compounds from chestnut shells by hydrothermal processing. Chemical Engineering Transactions, 70, 1705-1710. https://doi.org/10. 3303/CET1870285

Ham, J. S., Kim, H. Y., & Lim, S. T. (2015). Antioxidant and deodorizing activities of phenolic components in chestnut inner shell extracts. Industrial Crops and Products, 73, 99-105. https://doi.org/10.1016/j.indcrop.2015.04.017

Hara, H., Matsuda, T., Tsukihashi, T., & Matsuda, T. (1995). Morphological studies on pellicle development and removal in chestnut. Journal of the Japanese Society for Horticultural Science, 64(3), 485-497.

Hendry, G. A. F. (1996). Natural pigments in biology. In G. A. F. Hendry & J. D. Houghton (Eds.), Natural Food Colorants (2nd ed., pp. 16). Springer Science+Business Media. https://doi.org/10.1007/978-1-4615-2155-6

Hill, H. Z., Huselton, C., Pilas, B., & Hill, G. J. (1987). Ability of Melanins to Protect against the Radiolysis of Thymine and Thymidine. Pigment Cell Research, 1(2), 81-86. https://doi.org/10.1111/j.1600-0749.1987.tb00394. x

Huang, S. W., Pan, Y. M., Gan, D. H., Ouyang, X. L., Tang, S. Q., Ekunwe, S. I. N., & Wang, H. S. (2011). Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research, 20, 475-481. https://doi.org/10.1007/ s00044-010-9341-2

Hung, Y. C., Sava, V., Hong, M. Y., & Huang, G. S. (2004). Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn. Life Sciences, 74(16), 2037-2047. https://doi.org/10.1016/j.lfs. 2003.09.048

Hung, Y. C., Sava, V. M., Makan, S. Y., Chen, T. H. J., Hong, M. Y., & Huang, G. S. (2002). Antioxidant activity of melanins derived from tea: comparison between different oxidative states. Food Chemistry, 78(2), 233-240. https://doi.org/10.1016/S0308-8146(01)00403-4

Hwang, J. Y., Hwang, I. K., & Park, J. B. (2001). Analysis of physicochemical factors related to the automatic pellicle removal in Korean chestnut (Castanea crenata). Journal of Agricultural and Food Chemistry, 49, 6045-6049. https://doi.org/10.1021/jf010744b

Jung, S. H., Lee, G. B., Ryu, Y., Cui, L., Lee, H. M., Kim, J., Kim, B., & Won, K. J. (2019). Inhibitory effects of scoparone from chestnut inner shell on platelet-derived growth factor-BB-induced vascular smooth muscle cell migration and vascular neointima hyperplasia. Journal of the Science of Food and Agriculture, 99, 4397-4406. https://doi.org/10.1002/jsfa.9674

Kamei, H., Koide, T., Kojima, T., Hasegawa, M., & Umeda, T. (1997). Suppression of growth of cultured malignant cells by allomelanins, plant-produced melanins. Cancer Biotherapy and Radiopharmaceuticals, 12(1), 47-49. https://doi.org/10. 1089/cbr.1997.12.47

Karonen, M., Loponen, J., Ossipov, V., & Pihlaja, K. (2004). Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Analytica Chimica Acta, 522, 105-112. https://doi.org/10.1016/j.aca.2004.06. 041

Kim, J. H., Park, J. B., & Choi, C. H. (1997). Development of chestnut peeling machine. Journal of the Korean Society for Agricultural Machinery, 22, 289-294.

Leclercq, E., Taylor, J. F., & Migaud, H. (2010). Morphological skin colour changes in teleosts. Fish and Fisheries, 11(2), 159-193. https://doi.org/10.1111/j.1467-2979.2009.00346. x

Lee, C. B., & Lawless, H. T. (1991). Time-Course of Astringent Sensations. Chemical Senses, 16(3), 225-238. https://doi.org/10.1093/chemse/16.3.225

Li, Y.-Y., & Song, G.-S. (2004). Study on bacteriostasis of chestnut shell extract. Chemistry and Industry of Forest Products, 24(4), 61-64.

Liu, X., Wang, Y., Zhang, J., Yan, L., Liu, S., Taha, A. A., Wang, J., & Ma, C. (2020). Subcritical water extraction of phenolic antioxidants with improved α-amylase and α-glucosidase inhibitory activities from exocarps of Castanea mollissima Blume. The Journal of Supercritical Fluids, 158, Article e104747. https://doi.org/10.1016/j.supflu. 2019.104747

Łopusiewicz, Ł. (2016). Natural sources of melanin. II. International Conference on Human Ecology. Szczecin, Poland.

Mammela, P., Savolainen, H., Lindroos, L., Kangas, J., & Vartiainen, T. (2000). Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. Journal of Chromatography A, 891(1), 75-83. https://doi.org/10.1016/S0021-9673(00)00624-5

Mannelli, F., Daghio, M., Alves, S. P., Bessa, R. J. B., Minieri, S., Giovannetti, L., Conte, G., Mele, M., Messini, A., Rapaccini, S., Viti, C., & Buccioni, A. (2019). Effects of chestnut tannin extract, vescalagin and gallic acid on the dimethyl acetals profile and microbial community composition in rumen liquor: An in vitro study. Microorganisms, 7, Article e202. https://doi.org/10.3390/ microorganisms7070202

Martinez, S., & Stagljar, I. (2003). Correlation between the molecular structure and the corrosion inhibition efficiency of chestnut tannin in acidic solutions. Journal of Molecular Structure-Theochem, 640, 167-174. https://doi.org/10. 1016/j.theochem.2003.08.126

McRae, J. M., & Kennedy, J. A. (2011). Wine and Grape Tannin Interactions with Salivary Proteins and Their Impact on Astringency: A Review of Current Research. Molecules, 16, 2348-2364. https://doi.org/10.3390/ molecules16042348

Montefiori, D. C., & Zhou, J. Y. (1991). Selective Antiviral Activity of Synthetic Soluble L-Tyrosine and L-Dopa Melanins against Human-Immunodeficiency-Virus Invitro. Antiviral Research, 15(1), 11-26. https://doi.org/ 10.1016/ 0166-3542(91)90037-R

Mustafa, A. M., Abouelenein, D., Acquaticci, L., Alessandroni, L., Abd-Allah, R. H., Borsetta, G., Sagratini, G., Maggi, F., Vittori, S., & Caprioli, G. (2021). Effect of roasting, boiling, and frying processing on 29 polyphenolics and antioxidant activity in seeds and shells of sweet chestnut (Castanea sativa Mill.). Plants (Basel), 10, Article e2192. https://doi.org/10.3390/plants10102192

Nazzaro, M., Mottola, M. V., La Cara, F., Del Monaco, G., Aquino, R. P., & Volpe, M. G. (2012). Extraction and Characterization of Biomolecules from Agricultural Wastes. Ibic2012: International Conference on Industrial Biotechnology, 27, 331-336. https://doi.org/10.3303/ CET1227056

Nelson, C. D., Powell, W. A., Merkle, S. A., Carlson, J. E., Hebard, F. V., Islam-Faridi, N., Staton, M. E., & Georgi, L. (2014). Biotechnology of Trees: Chestnut. In K. G. Ramawat, Merillon, J.M., Ahuja, M.R. (Ed.), Tree Biotechnology (pp. 3-35). Taylor & Francis Group. https://doi.org/10.1201/b16714

Noh, J. R., Gang, G. T., Kim, Y. H., Yang, K. J., Hwang, J. H., Lee, H. S., Oh, W. K., Song, K. S., & Lee, C. H. (2010a). Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food and Chemical Toxicology, 48, 3177-3183. https://doi.org/10.1016/j.fct.2010. 08.018

Noh, J. R., Kim, Y. H., Gang, G. T., Hwang, J. H., Lee, H. S., Ly, S. Y., Oh, W. K., Song, K. S., & Lee, C. H. (2011). Hepatoprotective effects of chestnut (Castanea crenata) inner shell extract against chronic ethanol-induced oxidative stress in C57BL/6 mice. Food and Chemical Toxicology, 49, 1537-1543. https://doi.org/10.1016/j.fct. 2011.03.045

Noh, J. R., Kim, Y. H., Gang, G. T., Yang, K. J., Lee, H. S., Nguyen, P. H., Oh, W. K., Song, K. S., & Lee, C. H. (2010b). Chestnut (Castanea crenata) inner shell extract inhibits development of hepatic steatosis in C57BL/6 mice fed a high-fat diet. Food Chemistry, 121(2), 437-442. https://doi.org/10.1016/j.foodchem.2009.12.061

Oh, Y. T., Park, N. K., & Ko, Y. H. (1985). Chestnut shelling and peeling by chemical and mechanical methods. Nongsa Sihom Yongu Pogo, 27, 98-101.

Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2021). Optimizing the extraction of phemolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology, Food Chemistry, 334, Article e127521. https://doi.org/10.1016/j.foodchem.2020.127521

Pinto, D., Silva, A. M., Dall’Acqua, S., Sut, S., Vallverdú-Queralt, A., Delerue-Matos, C., & Rodrigues, F. (2023). Simulated gastrointestinal digestion of chestnut (Castanea sativa Mill.) shell extract prepared by subcritical water extraction: Bioaccessibility, bioactivity, and intestinal permeability by in vitro assays. Antioxidants, 12(7), Article e1414. https://doi.org/10.3390/antiox12071414

Rodrigues, F., Santos, J., Pimentel, F. B., Braga, N., Palmeira-de-Oliveira, A., & Oliveira, M. B. P. P. (2015). Promising new applications of Castanea sativa shell: nutritional composition, antioxidant activity, amino acids and vitamin E profile. Food & Function, 6, 2854-2860. https://doi.org/10.1039/ c5fo00571j

Rodrigues, D. B., Verissimo, L., Finimundy, T., Rodrigues, J., Oliveira, I., Gonçalves, J., Fernandes, I. P., Barros, L., Heleno, S. A., & Calhelha, R. C. (2023). Chemical and bioactive screening of green polyphenol-rich extracts from chestnut by-products: An approach to guide the sustainable production of high-added value ingredients, Foods, 12(13), Article e2596. https://doi.org/10.3390/foods12132596

Rose, P. M., Cantrill, V., Benohoud, M., Tidder, A., Rayner, C. M., & Blackburn, R. S. (2018). Application of anthocyanins from blackcurrant (Ribes nigrum L.) fruit waste as renewable hair dyes. Journal of Agricultural and Food Chemistry, 66, 6790-6798. https://doi.org/10.1021/acs.jafc.8b01044

Salminen, J. P., Ossipov, V., Loponen, J., Haukioja, E., & Pihlaja, K. (1999). Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. Journal of Chromatography A, 864, 283-291. https://doi.org/10.1016/ s0021-9673(99)01036-5

Sanzani, S. M., Schena, L., & Ippolito, A. (2014). Effectiveness of phenolic compounds against citrus green mould. Molecules, 19, 12500-12508. https://doi.org/10.3390/ molecules190812500

Sava, V. M., Yang, S. M., Hong, M. Y., Yang, P. C., & Huang, G. S. (2001). Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chemistry, 73, 177-184. https://doi.org/10.1016/S0308-8146(00)00258-2

Seo, K. H., Lee, J. Y., Debnath, T., Kim, Y. M., Park, J. Y., Kim, Y. O., Park, S. J., & Lim, B. O. (2016). DNA protection and antioxidant potential of chestnut shell extracts. Journal of Food Biochemistry, 40, 20-30. https://doi.org/10.1111/jfbc. 12179

Shen, T., Zhang, F., Yang, S., Wang, Y., Liu, H., Wang, H., & Hu, J. (2023). Comprehensive study on the pyrolysis process of chestnut processing waste (chestnut shells): Kinetic triplet, thermodynamic, in-situ monitoring of evolved gasses and analysis biochar. Fuel, 331, e125944. https://doi.org/10.1016/j.fuel.2022.125944

Sorice, A., Siano, F., Capone, F., Guerriero, E., Picariello, G., Budillon, A., Ciliberto, G., Paolucci, M., Costantini, S., & Volpe, M. G. (2016). Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules, 21(10), Article e1411. https://doi.org/10.3390/ molecules21101411

Squillaci, G., Apone, F., Sena, L. M., Carola, A., Tito, A., Bimonte, M., De Lucia, A., Colucci, G., La Cara, F., & Morana, A. (2018). Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochemistry, 64, 228-236. https://doi.org/10.1016/j.procbio.2017.09. 017

Tanaka, K., Kotobuki, K., & Kakiuchi, N. (1981). Numerization of peeling easiness and role of phenolic-compounds of the pellicle in the adhesion between the pellicle and embryo in comparison of Japanese (Castanea crenata Sieb. Et Zucc.) and Chinese (Castanea mollissima Blume) chestnuts. Journal of the Japanese Society for Horticultural Science, 50, 363-371.

Torres, M. D., Fradinho, P., Raymundo, A., & Sousa, I. (2014). Thermorheological and textural behaviour of gluten-free gels obtained from chestnut and rice flours. Food and Bioprocess Technology, 7, 1171-1182. https://doi.org/10. 1007/s11947-013-1132-6

Tuyen, P. T., Xuan, T. D., Khang, D. T., Ahmad, A., Quan, N. V., Anh, T. T. T., Anh, L. H., & Minh, T. N. (2017). Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants, 6, Article e31. https://doi.org/10.3390/antiox6020031

United States Department of Agriculture. (2019a). Nuts, chestnuts, european, dried, peeled. FoodData Central in USDA Agricultural Research Service. https://fdc.nal.usda. gov/fdc-app.html#/food-details/170167/nutrients

United States Department of Agriculture. (2019b). Nuts, chestnuts, european, dried, unpeeled. FoodData Central in USDA Agricultural Research Service. https://fdc.nal.usda. gov/fdc-app.html#/food-details/170576/nutrients

United States Department of Agriculture. (2019c). Nuts, chestnuts, european, raw, peeled. FoodData Central in USDA Agricultural Research Service. https://fdc.nal.usda. gov/fdc-app.html#/food-details/170575/nutrients

United States Department of Agriculture. (2019d). Nuts, chestnuts, european, raw, unpeeled. FoodData Central in USDA Agricultural Research Service. https://fdc.nal.usda. gov/fdc-app.html#/food-details/170574/nutrients

Vazquez, G., Fontenla, E., Santos, J., Freire, M. S., Gonzalez-Alvarez, J., & Antorrena, G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28, 279-285. https://doi. org/10.1016/j.indcrop.2008.03.003

Vazquez, G., Gonzalez-Alvarez, J., Santos, J., Freire, M. S., & Antorrena, G. (2009). Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 29, 364-370. https://doi.org/10.1016/j.indcrop. 2008.07.004

Vekiari, S. A., Gordon, M. H., Garcia-Macias, P., & Labrinea, H. (2008). Extraction and determination of ellagic acid content in chestnut bark and fruit. Food Chemistry, 110, 1007-1011. https://doi.org/10.1016/j.foodchem.2008.02. 005

Velisek, J., Davidek, J., & Cejpek, K. (2007). Biosynthesis of food constituents: Natural pigments. Part 1 - a review. Czech Journal of Food Sciences, 25(6), 291-315. https://doi.org/10. 17221/748-CJFS

Vella, F. M., De Masi, L., Calandrelli, R., Morana, A., & Laratta, B. (2019). Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds. European Food Research and Technology, 245, 2679-2686. https://doi.org/10.1007/s00217-019-03379-w

Vella, F. M., Laratta, B., La Cara, F., & Morana, A. (2018). Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Natural Product Research, 32, 1022-1032. https://doi.org/10.1080/14786419.2017.1378199

Vermerris, W., & Nicholson, R. (2006). Phenolic Compound Biochemistry. Springer, Netherlands.

Visioli, F., & Galli, C. (1998). Olive oil phenols and their potential effects on human health. Journal of Agricultural and Food Chemistry, 46, 4292-4296. https://doi.org/10.1021/ jf980049c

Wang, H. S., Pan, Y. M., Tang, X. J., & Huang, Z. Q. (2006). Isolation and characterization of melanin from Osmanthus fragrans seeds. LWT-Food Science and Technology, 39, 496-502. https://doi.org/10.1016/j.lwt.2005.04.001

Xie, C. Li, J., Fang, Y., Ma, R., Dang, Z., & Yang, F. (2023). Proanthocyanins and anthocyanins in chestnut (Castanea mollissima) shell extracts: biotransformation in the simulated gastrointestinal model and interaction with gut microbiota in vitro. Journal of the Science of Food and Agriculture, 103(7), 3659-3673. https://doi.org/10.1002/jsfa.12480

Yao, Z. Y., & Qi, J. H. (2016). Comparison of antioxidant activities of melanin fractions from chestnut shell. Molecules, 21, Article e487. https://doi.org/10.3390/ molecules21040487

Yao, Z. Y., Qi, J. H., Hu, Y., & Wang, Y. (2016). Insolubilization of chestnut shell pigment for Cu(II) adsorption from water. Molecules, 21, Article e405. https://doi.org/10.3390/ molecules21040405

Yao, Z. Y., Qi, J. H., & Wang, L. H. (2012). Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells. Journal of Food Science, 77, 671-676. https://doi.org/10.1111/j.1750-3841. 2012.02714.x

Yen, K.-C. (2006). Effectiveness of Different Post Harvest Treatments and Packaging Methods for Peeled Chestnuts. Michigan State University, Michigan, USA.

Yildiz, O., & Dogan, I. S. (2014). Optimization of gluten-free cake prepared from chestnut flour and transglutaminase: Response surface methodology approach. International Journal of Food Engineering, 10, 737-746. https://doi.org/ 10.1515/ijfe-2014-0024

Zamuz, S., Lopez-Pedrouso, M., Barba, F. J., Lorenzo, J. M., Dominguez, H., & Franco, D. (2018). Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Research International, 112, 263-273. https://doi.org/10.1016/j.foodres.2018.06. 053

Zhu, F. (2017). Properties and Food Uses of Chestnut Flour and Starch. Food and Bioprocess Technology, 10, 1173-1191. https://doi.org/10.1007/s11947-017-1909-0

Zhu, T., Shen, Q., Xu, Y., & Li, C. (2022). Ionic liquid and ultrasound-assisted extraction of chestnut shell pigment with good hair dyeing capability. Journal of Cleaner Production, 335, Article e130195. https://doi.org/10.1016/ j.jclepro.2021.130195

Živković, J., Zeković, Z., Mujić, I., Tumbas, V., Cvetković, D., & Spasojević, I. (2009). Antioxidant properties of phenolics in Castanea sativa Mill. extracts. Food Technology and Biotechnology, 47, 421-427.

Downloads

Published

30.04.2024

How to Cite

Aydoğan Coşkun, B. (2024). Bioactive Compounds and Industrial Peeling Applications of Inner and Outer Shells of Chestnuts (Castanea spp.) . Turkish Journal of Agriculture - Food Science and Technology, 12(4), 726–738. https://doi.org/10.24925/turjaf.v12i4.726-738.6627

Issue

Section

Review Articles