Evaluation of Physiological Changes in Important Dried Apricot Varieties Under Drought Stress

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is1.2089-2096.7088

Keywords:

Apricot, drought stress, physiological changes, resistance, Climate change

Abstract

Nearly all of the apricot varieties grown in Malatya are dried apricots and the plantation areas in this region are expanding daily. Due to the impact of climate change, producers are growing apricots mostly under limited irrigation or even dry conditions. Therefore, it is essential to determine the drought resistance characteristics of the varieties commonly cultivated in this region. In this study, different irrigation levels of 100%, 75%, 50% and 25% of available water were applied to Hacıhalioğlu, Kabaaşı, Çataloğlu, Hasanbey and Soğancı apricot varieties. To evaluate the resistance of the varieties to drought stress and its relationship with physiological changes, chlorophyll a and b, carotenoids, total sugar, total starch and abscisic acid contents in the leaves were analyzed. A decrease in chlorophyll a and b, carotenoids, total starch values and an increase in total sugar and ABA values were determined due to the decrease in irrigation rates. In Kabaasi and Hasanbey varieties, which were observed as the most resistant to water shortage, chlorophyll a and b, carotenoids, total starch values were higher and total sugar content was lower at decreased irrigation levels. No difference was detected between varieties in ABA values. As a result of the observations in the drought resistance tests and physiological analyses, it was concluded that the most resistant varieties were Kabaasi and Hasanbey. Unfortunately, the most sensitive variety was the most widespread Hacihaliloglu. In addition, analyzing and evaluating the physiological changes occurring in apricot under drought stress will be useful in developing the most appropriate irrigation strategies for each variety and increasing water use efficiency. It may also be useful in cross-breeding studies to develop new drought-resistant varieties.

References

Aghanejad, M., Mahfoozi, S., & Sharghi, Y. (2015). Effects of Late-Season Drought Stress on some Physiological Traits, Yield and Yield Components of Wheat Genotypes. Biological Forum-An International Journal, 7(1), 1426-1431. https://doi.org/10.15244/pjoes/85350

Ali, T. A., & Nazar, H. M. (2023). Response of Royal prunus armeniaca L. Apricot Trees to Humic Acid and Microelements Fertilization. In IOP Conference Series: Earth and Environmental Science, 1158 (9), 092005. https://doi.org/10.1088/1755-1315/1158/9/092005

Anjum, S. A., Xie, X., Wang, L., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032. https://doi.org/10.5897/AJAR10.027

Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Kesmala, T., Nageswara Rao, R. C., & Patanothai, A. (2008). Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194(2), 113-125. https://doi.org/10.1111 /j.1439-037X.2008.00299.x

Balasimha, D., Rajagopal, V., Daniel, E.V., Nair, R.V. & Bhagavan, S. (1988). Comparative drought tolerance of cacao accessions. Tropical Agriculture, 65(3).

Bing, Y. I., Zhou, Y. F., Gao, M. Y., Zhang, Z., Yi, H. A. N., Yang, G. D., & Huang, R. D. (2014). Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. Journal of Integrative Agriculture, 13(11), 2399-2406. https://doi.org/10.1016/S2095-3119(13)60694-2

Buxton, G. F., Cyr, D. R., Dumbroff, E. B., & Webb, D. P. (1985). Physiological responses of three northern conifers to rapid and slow induction of moisture stress. Canadian journal of botany, 63(7), 1171-1176.

Chalmers, D.J., Burge, G., Jerie, P.H. & Mitchell, P.D. (1986). The mechanism of regulation of ‘Barlett’ pear fruit and vegatative growth by irrigation withholding and regulated deficit irrigation. Journal of the American Society for Horticultural Science, 111, 904-907.

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 30(3), 239-264. https://doi.org/10.1071/FP02076

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology, 61, 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122

Dimler, F.G., Shaster, N.C. & Crist, C. (1952). Quantative paper chromotography of D-glucose and its oligosuccharites. Analytical Chemistry, 24, 1411-1414.

Eris, A. & Kaynas, N. (1995). Bazı şeftali çeşitlerinde kuraklığın içsel ABA değişimine etkileri. Türkiye II. Ulusal Bahçe Bitkileri Kongresi, 3-6 Ekim, Adana.

Eris, A., Sivritepe, N. & Sivritepe, H.O. (1998). Asmalarda su stresine karşı ortaya çıkan bazı morfolojik ve fizyolojik reaksiyonlar. 4. Bağcılık Sempozyumu, 20-23 Ekim, Yalova, 64-69

Falchi, R., Bonghi, C., Drincovich, M. F., Famiani, F., Lara, M. V., Walker, R. P., & Vizzotto, G. (2020). Sugar metabolism in stone fruit: Source-sink relationships and environmental and agronomical effects. Frontiers in plant science, 11, 573982. https://doi.org/10.3389/fpls.2020.573982

Fang, J., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673-689. https://doi.org/10.1007/s00018-014-1767-0

Fuhrt, B. & Lenz, F. (1989). Photosynthese von apfelblattern bei unter-schiedlicher wasserversorgung. Mitt. Klosterneu-burg, 39, 191-195.

Ghahremani, A., Moghaddam, E. G., & Marjani, A. (2023). Growth, yield, and biochemical behaviors of important stone fruits affected by plant genotype and environmental conditions. Scientia Horticulturae, 321, 112211. https://doi.org/10.1016/j.scienta.2023.112211Get rights and content

Günbatılı, F. (1979). Tokat-Kazonova koşullarında şeftalinin su tüketimi. Topraksu Genel Müd. Genel Yayın No.35:40

Hartmann, H.T. & Kester, D.E. (1974). Plant propagation, principles and practices (çev. N. Kaska ve M. Yılmaz), Ç. Ü. Fak. Yay. No:79: 610 s.

Hasan, M. M., Alabdallah, N. M., Salih, A. M., Al-Shammari, A. S., ALZahrani, S. S., Al Lawati, A. H. & Fang, X. W. (2023). Modification of starch content and its management strategies in plants in response to drought and salinity: current status and future prospects. Journal of Soil Science and Plant Nutrition, 23(1), 92-105. https://doi.org/10.1007/s42729-022-01057-7

Kaynas, N. & Kaynas, K. (1999). Bazı erik klon anaçlarının kurağa dayanımları. Türkiye III. Ulusal Bahçe Bitkileri Kongresi. 111-115, Ankara, 14-17 Eylül.

Keunen, E. L. S., Peshev, D., Vangronsveld, J., Van Den Ende, W. I. M., & Cuypers, A. N. N. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, cell & environment, 36(7), 1242-1255. https://doi.org/10.1111/pce.12061

Kirnak, H. & Demirtas, M.N. (2002). Su stresi altındaki kiraz fidanlarında fizyolojik ve morfolojik değişimlerin belirlenmesi. Atatürk Üniv. Ziraat Fak. Dergisi, 33(3), 265-270.

Laita, M., Sabbahi, R., Elbouzidi, A., Hammouti, B., Messaoudi, Z., Benkirane, R., & Aithaddou, H. (2024). Effects of sustained deficit irrigation on vegetative growth and yield of plum trees under the semi-arid conditions: Experiments and review with bibliometric analysis. ASEAN Journal of Science and Engineering, 4(2), 167-190. https://doi.org/10.17509/ajse.v4i2.64600

Lichtenthaler, H.K. & Welburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592. https://doi.org/10.1042/bst0110591

Hasdemir, M. (2023). Kayısı Ürün Raporu, Tarımsal Ekonomi Ve Politika Geliştirme Enstitüsü (TEPGE),. https://arastirma.tarimorman.gov.tr/tepge/

Hiron, R.W.P. & Wright, S.T.C. (1973). The role of endogenous abscisic acid in the response of plants to stress. Journal of Experimental Botany, 24, 769-781.

Jackson, L.K., Summerhill, W.R. & Ferguson, J.J. (1986). A survey of young citrus tree care practices in Florida . Proceedings of the Florida State Horticultural Society, 99, 44-46.

Jalili, S., Arzani, K., Prudencio, A. S., Salazar, J. A., Martínez-García, P. J., Bouzari, N., & Martínez-Gómez, P. (2023). Integrated Morphological, Physiological and Molecular Analysis of the Drought Response in Cultivated and Wild Prunus L. Subgenera Cerasus Species. Plant Molecular Biology Reporter, 41(3), 440-453. https://doi.org/10.1007/s11105-023-01379-5

Kumar, A., Sharma, N., Wani, T. F., & Sharma, R. (2023). Water productivity of temperate fruits in climate change scenario. In Advances in water management under climate change (pp. 210-235). CRC Press

Liu, X., Gao, T., Liu, C., Mao, K., Gong, X., Li, C., & Ma, F. (2023). Fruit crops combating drought: Physiological responses and regulatory pathways. Plant Physiology, 192(3), 1768-1784. https://doi.org/10.1093/plphys/kiad202

Marler, T.E., Schaffer, B. & Crane, J.H. (1994). Developmental light level affects growth, morphology, and leaf physiology of young carambola trees. Journal of the American Society for Horticultural Science, 119(4), 711-718. https://doi.org/10.21273/JASHS.119.4.711

McQuinn, R. P., & Waters, M. T. (2024). Apocarotenoid signals in plant development and beyond. Journal of Experimental Botany, 75(4), 1131-1133. https://doi.org/10.1093/jxb/erae024

Mitchell, P. D., Ende, V. D., Jerie, P. H. & Chalmers, D. J. (1989). Response of ‘Barlett’ pear to withholding irrigation, regulated deficit irrigation and tree spacing. Journal of the American Society for Horticultural Science, 114, 15-19. https://doi.org/10.21273/jashs.114.1.15

Munns, R. & Weir, R. (1981). Contrubition of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Australian Journal of Plant Physiology, 8, 93-105. https://doi.org/10.1071/PP9810093

Niyogi, K. K. (1999). Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Biology, 50(1), 333-359. https://doi.org/10.1146/annurev.arplant.50.1.333

Nofrizal, A.Y.; Sonobe, R.; Yamashita, H.; Seki, H.; Mihara, H.; Morita, A., & Ikka, T. (2022). Evaluation of a one-dimensional convolution neural network for chlorophyll content estimation using a compact spectrometer. Remote Sensing, 14, 1997. https://doi.org/10.3390/rs14091997

Olmez, H. A., Gulcan, R. & Misirli, A. (2010). Bazı Kurutmalık Kayısı Çeşitlerinde Kuraklık Stresinde Oluşan Morfolojik Değişimlerin Belirlenmesi. I. Ulusal Sulama ve Tarımsal Yapılar Sempozyumu, 27-29 Mayıs, Kahramanmaraş.

Ozbek, H., Yesilsoy, M. Ş., Guzel, N., Berkman, A. & Kapur, S. A. (1976). Genel toprak bilimi uygulama notları. Cuk.Univ.Zir.Fak.Adana, p: 41.

Pomper, K. W. & Breen, P. J. (1997). Expansion and osmotic adjustment of strawberry fruit during water stress. Journal of the American Society for Horticultural Science, 122(2), 183-189. https://doi.org/10.21273/JASHS.122.2.183

Proebsting, E. L., Middleton, J. E. & Roberts, S. (1977). Altered fruiting and growth characteristics of ‘Delicious’ apple associated with irrigation method. Journal of the American Society for Horticultural Science, 12, 349-350. https://doi.org/10.21273/HORTSCI.12.4.349

Proebsting, E. L. & Middleton, J. E. (1980). The behavior of peach and pear trees under extreme drought stress. Journal of the American Society for Horticultural Science, 105:380-385. https://doi.org/10.21273/JASHS.105.3.380

Qin, X., & Zeevaart, J. A. (1999). The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy of Sciences of the United States of America, 21, 96(26), 15354-61. https://doi.org/10.1073/pnas.96.26.15354.

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227.

Steinberg, S.L., Miller, J.C. & McFarland, M.J. (1990). Dry matter partitioning and vegetative growth of young peach trees under water stress. Australian Journal of Plant Physiology, 17, 23-36. https://doi.org/10.1071/PP9900023

Talebi, R. (2011). Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Australian Journal of Basic and Applied Sciences, 5, 1457–1462.

Tsiupka, V., Tsiupka, S., Plugatar, Y., Bulavin, I., & Komar-Tyomnaya, L. (2023). Assessment of the Drought-Tolerance Criteria for Screening Peach Cultivars. Horticulturae, 9(9), 1045. https://doi.org/10.3390/horticulturae9091045

Tuzuner, A. (1983). Toprak rutubetini değerlendirme yöntemleri. Toprak ve Gübre Araş. Ens. Yayın no: 118:13

Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell & Environment, 33(4), 510-525. https://doi.org/10.1111/j.1365-3040.2009.02052.x

Yurekli, K., Guven, A., & Gork, G. (1974). Spektrofotometre ile büyüme hormonlarının kantitatif tayinleri üzerinde çalışmalar. Bitki, 1(1):60-68.

Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97(1), 111-119. https://doi.org/10.1016/j.fcr.2005.08.018

Zhang, Y., Tan, J., Guo, Z., Lu, S., He, S., Shu, W., & Zhou, B. (2009). Increased abscisic acid levels in transgenic tobacco over‐expressing 9 cis‐epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant, cell & environment, 32(5), 509-519. https://doi.org/10.1111/j.1365-3040.2009.01945.x

Downloads

Published

08.12.2024

How to Cite

Ölmez, H., Celik, B., & Misirli, A. (2024). Evaluation of Physiological Changes in Important Dried Apricot Varieties Under Drought Stress. Turkish Journal of Agriculture - Food Science and Technology, 12(s1), 2089–2096. https://doi.org/10.24925/turjaf.v12is1.2089-2096.7088