Effect of Ultrasonic Waves on Aspire Biodiesel and Comparison of Its Properties with Petroleum Diesel

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i10.1785-1795.7117

Keywords:

Biodiesel, Safflower oil, Sonication, Petroleum diesel, Sustainable energy

Abstract

This study aimed to determine the effect of ultrasonic sound waves on modifying the chemical structure of biodiesel to bring its physical properties closer to petroleum diesel. In this direction, safflower oil was selected because its fatty acid composition is similar to fatty acid esters of petroleum diesel and is a sustainable source. Refined safflower oil, the free fatty acid content of which was determined, was reacted with methanol under NaOH catalyst to perform the transesterification reaction. After biodiesel production, samples were incubated in an ultrasonic bath for 60, 120, and 180 minutes. FTIR, density, free fatty acid content, flash point, viscosity, and cloud point analyses investigated the effect of incubation times on biodiesel's chemical structure and properties. FTIR spectra showed that ultrasonic sound waves partially decomposed fatty acid methyl esters and increased the number of volatile components in biodiesel. The flash point of biodiesel has been associated with a decrease of 89°C, and the low flash point is expected to increase fuel efficiency. Kinematic viscosity values were measured in the 3.4583-3.5115 mm²/s range, and density values were measured in the 0.8820-0.8872 g/ml range. These values show that biodiesel complies with national and international standards. As a result, the ultrasonic bath process applied to biodiesel showed a similar result to chemical modification methods by affecting the structure of fatty acid chains. Thus, it brought the physical properties of biodiesel closer to petroleum diesel. It is seen that this method is a more efficient alternative for biodiesel production because it does not use additional chemicals, and the process is faster. In conclusion, by increasing the production of the drought-resistant safflower plant, sustainable energy resources will be contributed, while its waste can be evaluated as animal feed. Ultrasonicated safflower biodiesel can also be used as an efficient, environmentally and mechanically friendly alternative fuel source.

References

Abbasi, T. U., Ahmad, M., Alsahli, A. A., Asma, M., Rozina, Mussagy, C. U., Abdellatief, T. M. M., Pastore, C. & Mustafa, A. (2024). Eco-friendly production of biodiesel from Carthamus tinctorius L. seeds using bismuth oxide nanocatalysts derived from Cannabis sativa L. Leaf extract. Process Safety and Environmental Protection. https://doi.org/10.1016/J.PSEP.2024.08.108

Aktaş, E. S., Demir, Ö. & Uçar, D. (n.d.). A Review Of The Biodiesel Sources And Production Methods. International Journal of Energy and Smart Grid, 5, 2020.

Alpaslan, N., Koca, D., Alpaslan, N. & Koca, D. (2012). Petrol Arama Çalışmalarında Kullanılan Jeofizik Yöntemlere Genel Bir Bakış. Batman University Journal of Life Sciences, 2(1), 157–170. https://dergipark.org.tr/en/pub/buyasambid/issue/29822/320802

Altıntop, M. & Gidik, B. (2019). Türkiye’de Ayçiçeği, Soya, Kolza ve Aspir Üretimindeki Gelişmeler. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2(2), 307–315. https://dergipark.org.tr/tr/pub/bufbd/issue/50962/500430

ASTM. (2008). Specification for Biodiesel (B100) ASTM D6751-08. ASTM. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://c1-preview.prosites.com/37030/wy/docs/ASTM%20Biodiesel%20Specs_Nov08.pdf

ASTM. (2017). ASTM D975. https://kupdf.net/download/astm-d975_59a57118dc0d60ca1f568edb_pdf

Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A. & Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, 211–245. https://doi.org/10.1016/J.RSER.2012.10.013

Badday, A. S., Abdullah, A. Z. & Lee, K. T. (2013). Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst. Applied Energy, 105, 380–388. https://doi.org/10.1016/J.APENERGY.2013.01.028

Berthomieu, C. & Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101(2–3), 157–170. https://doi.org/10.1007/S11120-009-9439-X/FIGURES/4

Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C., Santos, I. M. G. & Souza, A. G. (2009). Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88(4), 738–743. https://doi.org/10.1016/J.FUEL.2008.10.015

Cazorla, G., Déléris, G. & Petibois, C. (2002). Triglycerides and Glycerol Concentration Determinations Using Plasma FT-IR Spectra. Applied Spectroscopy, Vol. 56, Issue 1, Pp. 10-16, 56(1), 10–16. https://opg.optica.org/abstract.cfm?uri=as-56-1-10

Correa Pabón, R. E. & Souza Filho, C. R. de. (2019). Crude oil spectral signatures and empirical models to derive API gravity. Fuel, 237, 1119–1131. https://doi.org/10.1016/J.FUEL.2018.09.098

Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31(5–6), 466–487. https://doi.org/10.1016/J.PECS.2005.09.001

Demirbas, A. H. & Demirbas, I. (2007). Importance of rural bioenergy for developing countries. Energy Conversion and Management, 48(8), 2386–2398. https://doi.org/10.1016/J.ENCONMAN.2007.03.005

Edition, F. (2008). Biodiesel Handling and Use Guide. Natl. Renew. Energy Lab. Innov. Our Energy Futur.

Eryilmaz, T., Cesur, C., Kadir YESİLYURT, M., AYDIN Bozok Üniversitesi, E., Fakültesi, M.-M., Mühendisliği Bölümü, B., Bozok Üniversitesi, Y., ve Doğa Bilimleri Fakültesi, T., Bitkileri Bölümü, T., Recep Tayyip Erdoğan Üniversitesi, Y. & ve Doğa Bilimleri Fakültesi, Z. (2014). Aspir (Carthamus tinctorius L.), Remzibey-05 Tohum Yağı Metil Esteri: Potansiyel Dizel Motor Uygulamaları için Yakıt Özellikleri. Turkish Journal of Agricultural and Natural Sciences, 1(1), 85–90. https://dergipark.org.tr/en/pub/turkjans/issue/13306/160739

Eryılmaz, T. & Erkan, M. (2015). Design of a Small Scale Pilot Biodiesel Production Plant and Determination of the Fuel Properties of Biodiesel Produced With This Plant. Turkish Journal of Agriculture - Food Science and Technology, 3(2), 67–70. https://doi.org/10.24925/TURJAF.V3I2.67-70.238

Fan, X., Wang, X. & Chen, F. (2010). Ultrasonically Assisted Production of Biodiesel from Crude Cottonseed Oil. International Journal of Green Energy, 7(2), 117–127. https://doi.org/10.1080/15435071003673419

Forfang, K., Zimmermann, B., Kosa, G., Kohler, A. & Shapaval, V. (2017). FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi. PLOS ONE, 12(1), e0170611. https://doi.org/10.1371/JOURNAL.PONE.0170611

Hanh, H. D., Dong, N. T., Okitsu, K., Nishimura, R. & Maeda, Y. (2009). Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition. Renewable Energy, 34(3), 780–783. https://doi.org/10.1016/J.RENENE.2008.04.001

Hasan, M. M. & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74, 938–948. https://doi.org/10.1016/J.RSER.2017.03.045

He, B. B., Gerpen, J. H. Van & Thompson, J. C. (2009). Sulfur Content in Selected Oils and Fats and their Corresponding Methyl Esters. Applied Engineering in Agriculture, 25(2), 223–226. https://doi.org/10.13031/2013.26319

İçingür, Y., Koçak, S., Üniversitesi, G., Eğitim, T., Makine, F., Bölümü, E., Astsubay, K. K., Yüksek, M., Motor, O. & Balikesir, B. (2006). Fındık Yağı Metil Esterinin Dizel Yakıtı Alternatifi Olarak Performans ve Emisyon Parametrelerinin İncelenmesi. Journal of Polytechnic, 9(2), 119–124. https://dergipark.org.tr/en/pub/politeknik/issue/33020/367095

Khalid, N., Khan, R. S., Hussain, M. I., Farooq, M., Ahmad, A. & Ahmed, I. (2017). A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient - A review. Trends in Food Science & Technology, 66, 176–186. https://doi.org/10.1016/J.TIFS.2017.06.009

Knothe, G. & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9), 1059–1065. https://doi.org/10.1016/J.FUEL.2005.01.016

Martinez-Guerra, E. & Gude, V. G. (2014). Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures. Waste Management, 34(12), 2611–2620. https://doi.org/10.1016/J.WASMAN.2014.07.023

Martinez-Guerra, E., Gude, V. G., Mondala, A., Holmes, W. & Hernandez, R. (2014). Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Applied Energy, 129, 354–363. https://doi.org/10.1016/J.APENERGY.2014.04.112

Miglio, R., Palmery, S., Salvalaggio, M., Carnelli, L., Capuano, F. & Borrelli, R. (2013). Microalgae triacylglycerols content by FT-IR spectroscopy. Journal of Applied Phycology, 25(6), 1621–1631. https://doi.org/10.1007/S10811-013-0007-6/FIGURES/9

Mofijur, M., Rasul, M. G., Hyde, J., Azad, A. K., Mamat, R. & Bhuiya, M. M. K. (2016). Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renewable and Sustainable Energy Reviews, 53, 265–278. https://doi.org/10.1016/J.RSER.2015.08.046

Moodley, P. (2021). Sustainable biofuels: opportunities and challenges. Sustainable Biofuels: Opportunities and Challenges, 1–20. https://doi.org/10.1016/B978-0-12-820297-5.00003-7

Moon, G., Lee, Y., Choi, K. & Jeong, D. (2010). Emission characteristics of diesel, gas to liquid, and biodiesel-blended fuels in a diesel engine for passenger cars. Fuel, 89(12), 3840–3846. https://doi.org/10.1016/J.FUEL.2010.07.009

Na, K., Biswas, S., Robertson, W., Sahay, K., Okamoto, R., Mitchell, A. & Lemieux, S. (2015). Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck. Atmospheric Environment, 107, 307–314. https://doi.org/10.1016/J.ATMOSENV.2015.02.054

Nogales-Delgado, S., Encinar, J. M. & González Cortés, Á. (2021). High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Industrial Crops and Products, 170, 113701. https://doi.org/10.1016/J.INDCROP.2021.113701

Parida, S., Sahu, D. K. & Misra, P. K. (2012). Preparation of Biodiesel Using Ultrasonication Energy and its Performance in CI Engine. International Journal of Green Energy, 9(5), 430–440. https://doi.org/10.1080/15435075.2011.621490

Patil, A., Baral, S. & Dhanke, P. (2021). Hydrodynamic cavitation for process intensification of biodiesel synthesis- a review. Current Research in Green and Sustainable Chemistry, 4, 100144. https://doi.org/10.1016/J.CRGSC.2021.100144

R. O. Dunn. (2011). Specific Gravity and API Gravity of Biodiesel and Ultra-Low-Sulfur Diesel (ULSD) Blends. Transactions of the ASABE, 54(2), 571–579. https://doi.org/10.13031/2013.36461

Sabudak, T. & Yildiz, M. (2010). Biodiesel production from waste frying oils and its quality control. Waste Management, 30(5), 799–803. https://doi.org/10.1016/J.WASMAN.2010.01.007

Şahin, S. & Yılmaz, F. (2024). Physicochemical Characterization and Butanol Impact on Canola and Waste Cooking Oil Biodiesels: A Comparative Analysis with Binary Biodiesel Blends. Turkish Journal of Agriculture - Food Science and Technology, 12(2), 221–227. https://doi.org/10.24925/TURJAF.V12I2.221-227.6569

Şahin, T. & Sural, T. (2020). Biyodizel Yan Ürünlerinin Hayvan Beslemede Kullanımı. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 199–206. https://doi.org/10.47495/OKUFBED.767249

Sakthivel, R., Ramesh, K., Purnachandran, R. & Mohamed Shameer, P. (2018). A review on the properties, performance and emission aspects of the third generation biodiesels. Renewable and Sustainable Energy Reviews, 82, 2970–2992. https://doi.org/10.1016/J.RSER.2017.10.037

Shameer, P. M., Ramesh, K., Sakthivel, R. & Purnachandran, R. (2016). Studies on Correlation between NOx and In-cylinder Temperature in a D.I Diesel Engine using FLUKE Thermal Imager for different Alternate Fuel Blends. Asian Journal of Research in Social Sciences and Humanities, 6(12), 373. https://doi.org/10.5958/2249-7315.2016.01298.3

Siatis, N. G., Kimbaris, A. C., Pappas, C. S., Tarantilis, P. A. & Polissiou, M. G. (2006). Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. Journal of the American Oil Chemists’ Society, 83(1), 53–57. https://doi.org/10.1007/S11746-006-1175-1

Şimşek, F. (2024). Investigation of the effects of ultrasonic bath application on the characteristic properties of biodiesel obtained from hazelnut oil. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1583–1596. https://doi.org/10.17341/GAZIMMFD.1230079

Simsek, S. (2020). Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions. Fuel, 265, 117026. https://doi.org/10.1016/J.FUEL.2020.117026

Singh, S. P. & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200–216. https://doi.org/10.1016/J.RSER.2009.07.017

Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. https://doi.org/10.1201/B10777

Stavarache, C., Vinatoru, M., Nishimura, R. & Maeda, Y. (2005). Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasonics Sonochemistry, 12(5), 367–372. https://doi.org/10.1016/J.ULTSONCH.2004.04.001

Tissot B.P. & Welte D.H. (2013). Petroleum Formation and Occurrence. https://books.google.com.tr/books/about/Petroleum_Formation_and_Occurrence.html?id=avLxCAAAQBAJ&redir_esc=y

Verma, P. & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071. https://doi.org/10.1016/J.RSER.2016.04.054

Yesilyurt, M. K., Cesur, C., Aslan, V. & Yilbasi, Z. (2020). The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 119, 109574. https://doi.org/10.1016/J.RSER.2019.109574

Zaimes, G. G., Vora, N., Chopra, S. S., Landis, A. E. & Khanna, V. (2015). Design of Sustainable Biofuel Processes and Supply Chains: Challenges and Opportunities. Processes 2015, Vol. 3, Pages 634-663, 3(3), 634–663. https://doi.org/10.3390/PR3030634

Zhenyi, C., Xing, J., Shuyuan, L. & Li, L. (2021). Biodiesel Production Methods. International Journal of Energy and Smart Grid, 5(1–2), 1–10. https://doi.org/10.1080/00908310490465902

Downloads

Published

15.10.2024

How to Cite

Şimşek, F. (2024). Effect of Ultrasonic Waves on Aspire Biodiesel and Comparison of Its Properties with Petroleum Diesel. Turkish Journal of Agriculture - Food Science and Technology, 12(10), 1785–1795. https://doi.org/10.24925/turjaf.v12i10.1785-1795.7117

Issue

Section

Research Paper