Zinc and Phosphate Solubilizing by Rhizobacteria Promotes Lettuce (Lactuca sativa L.) Growth in Salty Conditions
DOI:
https://doi.org/10.24925/turjaf.v12is1.2112-2120.7133Keywords:
Salt stress, antioxidant enzymes, lettuce seedling, PGPR, Zn+P combinationsAbstract
Due to climate change, the world is negatively affected by drought, temperature, salinity, and flood stress, leading to a significant decline in crop production. Lettuce is particularly significant when considering salt stress. To increase plant tolerance to salinity, various strategies are employed to support the development of agriculture. Rhizobacteria play a key role in regulating phosphorus (P) and zinc (Zn) homeostasis in plants. According to the study results, Rhizobium bacteria supported plant growth by improving the solubility of zinc and phosphate. These findings highlight the beneficial effects of plant growth-promoting rhizobacteria (PGPR) on the antioxidant system, which helps detoxify reactive oxygen species. The relationship between proline accumulation and antioxidant enzyme activities showed that PGPR inoculation enhanced the plant's defense mechanism against salt stress. In establishing this tolerance, increases in chlorophyll content, repair of membrane repair, and higher leaf relative humidity under salt stress were observed. PGPR also improved seedling height, diameter, and fresh and dry weight under stress by 70%, 51.4%, 55%, and 109%, respectively, due to the stress-mitigating effects of P and Zn. In conclusion, it is predicted that there will be a need to develop fertilization programs containing different rhizobacteria and Zn+P combinations. These programs would activate the antioxidant mechanism in saline soils, stabilize physiological processes, and positively impact plant growth.
References
Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate research, 11(1), 19-30.
Agarwal, S., Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plant., 48 (4), pp. 555-560, 10.1023/B:BIOP.0000047152.07878.e7
Al-Barakah, F. N. I., & Sohaib, M. (2019). Evaluating the germination response of Chenopodium quinoa seeds to bacterial inoculation under different germination media and salinity conditions. Seed Science and Technology, 47, 161-169, https://doi.org/10.15258/sst.47.2.05.
Alp, Y., & Kabay, T. (2019). Effect of drought stress on antioxidant enzyme and nutrient change in some tomato genotypes. Turkish Journal of Agriculture and Natural Sciences, 6 (1), 71-77.
Alqarawi, A. A., Hashem, A., & Abd Allah, E. F. (2014). Alleviation of salt induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions, 9, 802–810.
Alscher, R. G., Donahue, J. L., & Cramer, C. L. (1997). Reactive oxygen species and antioxidants: relationship in green cells. Physiol. Plant 100, 224–233.
Angelini, R., & Federico, R. (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. Journal of Plant Physiology, 135(2), 212-217.
Bapiri, A., Asgharzadeh, A., Mujallali, H., & Pazira, E. (2012). Evaluation of zinc solubilization potential by different strains of fluorescent Pseudomonads. J Appl Sci Environ Manag 16:295–298.
Baslam, M., Mitsui, T., Hodges, M., Priesack, E., Herritt, M. T., Aranjuelo, I., & Sanz-Sáez, Á. (2020). Photosynthesis in a changing global climate: Scaling up and scaling down in crops. Front. Plant Sci. , 11, 882.
Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid Determination of Free Proline for Water Stress Studies. Plant Soil. 39, 205–207.
Borjas- Ventura, R., Ferraudo, A. S., Martínez, C. A., & Gratão, P. L. (2020). Global warming: Antioxidant responses to deal with drought and elevated temperature in Stylosanthes capitate a forage legume. Journal of Agronomy and Crop Science, 206 (1), 13–27. https://doi.org/10.1111/jac.12367.
Chabot, R., Antoun, H., & Cescas, PM. (1996).Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184: 311–321.
Chance, B., Maehly, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2 pp. 765-775, 10.1016/S0076-6879(55)02300-8
Chaoui, A., Mazhoudi, S., Ghorbal, M. H., & El Ferjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 127(2), 139-147. https://doi.org/10.1016/S0168- 9452(97)00115-5
Dasgan, H. Y., Aktas, H,. Abak, K., & Cakmak, I. (2002). Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses, Plant Science, 163 (4), 695- 703.
Desoky, E.-S.M., Saad, A.M., El-Saadony, M.T., Merwad, A.-R.M., & Rady, M.M. (2020). Plant growth- promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatalysis and Agricultural Biotechnology, 30, 101878.
Dey, G., Banerjee, P., Sharma, R. K., Maity, J. P., Etesami, H., Shaw, A. K., & Chen, C. Y. (2021). Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review. Agronomy, 11(8), 1552.
El hasini, S., Halima, I.O., Azzouzi, M.E., Douaik, A., Azim, K., Zouahri, A., 2019. Organic and inorganic remediation of soils affected by salinity in the sebkha of sed el mesjoune – Marrakech (Morocco). Soil Tillage Res. 193, 153–160.
Evelin, H., Giri, B., & Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum.Mycorrhiza. 22, 203–217.
Farooq, M., Aziz, T., Basra, S.M.A., Cheema, M.A., & Rehamn, H. (2008) Chilling tolerance in hybrid maize induced by seed priming with salicylic acid, J. Agron. Crop Sci. 194, 161–168.
Ghoulam, C., Foursy, A., & Fores, K. (2002). Effects of Salt Stress on Growth Inorganic ions and Proline Accumulation in Relation to Osmotic Adjustment in Five Sugar Beet Cultivars, Enviromental and Exp. Botany, 47: 39-50.
Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology advances, 15(2), 353-378.
Han, H. S., & Lee, K. D. (2005). Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci, 1(3), 216-221.
Hardy, R.W.F., Holstern, R.D., Jacksoen, E.K., & Burns, R.C. (1968).The acetylene-ethylene assay for N 2 fixation: laboratory and field evaluation. Plant Physiol, 43:1185–1207.
Havir, E.A., McHale, N.A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol, 84 (2) pp. 450-455
Hela, M., Nawel, N., Imen, T., Hanen, Z., Imen, B. S., Raouia, B. M., Olfa, B., Rym, K., Mouhiba, B.N.A., Abdelali, H., Lachaâl, M., Ouerghi, Z. (2011). Salt stress induced changes in germination, lipid peroxidation and antioxidant activities in lettuce (Lactuca sativa L.) seedlings. African Journal of Biotechnology, 10(65), 14498-14506.
Hoque, M.M., Ajwa, H., & Othman, M. (2010).Yield and postharvest qualityof lettuce in response to nitrogen, phosphorus and potassiumfertilizers. Hortic Sci., 45 (10):1539–1544.
Hothem, S.D., Marley, K.A., & Larson, R.A., (2003). Photochemistry in Hoagland’s nutrient solution. Journal of Plant Nutrition. 26,4, 845–854. https://doi.org/10.1016/j.bcab.2020.101878.
Hussain, A. Zahir, Z.A., Ditta, A., Tahir, M.U., Ahmad, M., Mumtaz, M.Z., Hayat, K., & Hussain, S., (2020). Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy ,10:39.
Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T., & Hona, T. (2002).Urea and Manure Effect on Growth and Mineral Contents of Maize under Saline Conditions, Journal of Plant Nutrition, 25(1): 189- 200.
Johnson, L.F., & Curl, E.A. (1972). Methods for research on the ecology of soil-borne plant pathogens. In: Methods for research on the ecology of soil-borne plant pathogens.
Johnstone, P.R., Hartz, T.K., Cahn, M.D., & Johnstone, M.R., (2005).Lettuce response to phosphorus fertilization in high phosphorus soils. Hortic Sci 40 (5):1499–1503.
Kabay, T. (2019). Effects of different potassium doses on development of high temperature-sensiti ve bean plants. Fresenius Environmental Bulletin, 28 (1): 320-325.
Kacar, B. (1972). Chemical Analysis of Soil and Plant, Ankara University. Faculty of Agriculture Publication No: 53, A.U. Press, Ankara.
Kadmiri, I. M., Chaouqui, L., Azaroual, S. E., Sijilmassi, B., Yaakoubi, K., & Wahby, I. (2018). Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arabian Journal for Science and Engineering, 43, 3403-3415..
Kallala, N. M’sehli, W. Jelali, K. Kais, Z. & Mhadhbi H. (2018). Inoculation with efficient nitrogen fixing and indoleacetic acid producing bacterial microsymbiont enhance tolerance of the model legume Medicago truncatula to iron deficiency. Biomed Res Int 2018: 9134716.
Kang, S.M., Radhakrishnan, R., You, Y. H., Joo, G. J., Lee, I.J., Lee, K.E., & Kim, J.H.(2014). Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54(4):427–433.
Ku, Y. S., Rehman, H.M., Lam, H. M. (2019). Possible roles of rhizospheric and endophytic microbes to provide a safe and affordable means of crop biofortification. Agronomy, 9 (11):764.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78 (3), 389-398.
Mahajan, S.G., Nandre, V.S., Salunkhe, R.C., Shouche, Y.S., & Kulkarni, M.V. (1920). Chemotaxis and physiological adaptation of an indigenous abiotic stress tolerant plant growth promoting Pseudomonas stutzeri: Amelioration of salt stress to Cicer arietinum. Biocatalysis and Agricultural Biotechnology, 27, 101652, 1920. https://doi.org/10.1016/j.bcab.2020.101652.
Mittler, R., (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.
Mousavi, S.R, Galavi, M. & Rezaei M. (2013). Zinc (Zn) importance for crop production—a review. Int J Agron Plant Prod 4 (1):64–68.
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736.
Mumtaz, M. Z., Ahmad, M., Jamil, M., & Hussain, T. (2017). Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological research, 202, 51-60.
Munns, R., & Mark, T. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59.1: 651-681.
Navarro-León, E., López-Moreno, F. J., de La Torre-Gonzalez, A., Ruiz, J. M., Esposito, S., & Blasco, B. (2020). Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environmental and experimental botany,175, 104061.
Neill, S., Desikan, R., Hancock, J., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5, 388–395.
Okon, Y., Albrecht, S.L., & Burris, R.H., (1977). Methods of growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol, 33:85–88.
Oster, J. D., & Jayawardane, N. S. (1998). Agricultural management of sodic soils. In ‘Sodic Soils: Distribution, properties, management, and environmental consequences’.(Eds ME Sumner and R Naidu) pp. 125–147.
Ouhaddou, R., Ben-Laouane, R., Lahlali, R., Boutasknit, A., Slimani, A., Oufdou, K., Meddich, A., Anli, M., Ikan, C., Baslam, M. & Barka, E. A., 2022, Application of Indigenous Rhizospheric Microorganisms and Local Compost as Enhancers of Lettuce Growth, Development, and Salt Stress Tolerance, Microorganisms, 10, 2-23.
Qin, S., Feng, W.W., Wang, T.T., Ding, P., Xing, K., & Jiang, J.H. (2017). Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant Soil, 416, 117-132, https://doi.org/10.1007/s11104-017-3192-2.
Sardar, H., Khalid, Z., Ahsan, M., Naz, S., Nawaz, A., Ahmad, R., Razzaq, K., Wabaidur, S. M., Jacquard, C., Širić, I., Kumar, P., & Fayssal, S. A. (2023). Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants, 12(5), 1115.
Schwyn, B., & Neilands, J.B. (1987).Universal chemical assay for the detection and determination of siderophores. Anal. Biochem, 160, 47-56, https://doi.org/10.1016/0003-2697(87)90612-9.29.
Tavallali, V., Rahemi, M. Eshghi, S., Kholdebarin, B. & Ramezanian, A. (2010).Zinc alleviates salt stress and increase antioxidant enzymeactivity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedings. Turk J Agric For 34: 349–359.
TÜİK, (2019). Türkiye İstatistik Kurumu Verileri. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 (Erişim Tarihi: 05.03.2020).
Turan, M. Ekinci, M. Yildirim, E. Güneş, A. Karagöz, K. Kotan, R.& Dursun, A. (2014). Plant growth promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Türkish J. Agri. For., 38: 327-333.
Unlukara, A., Cemek, B., Karaman, S., & Ersahin, S. (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36, 265-273.
Upadhyay, S.K., Singh, J.S., Saxena, A.K. and Singh, D.P. (2011). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant biology vol. 14 Pages 605-611. DOI: 10.1111/j.1438-8677.2011.00533.x
Vaid, S.K., Kumar, B., Sharma, A., Shukla, A.K., & Srivastava, P.C. (2014). Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889– 910.
Wahyudi, A.T., & Astuti, R.I., (2011). Screening of Pseudomonas sp. İsolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am J Agric Biol Sci 6:134-141.
Yılmaz, E., Tuna, A.L., & Bürün, B. (2011).Tolerance strategies developed by plants against salt stress. Celal Bayar University Journal of Science, 7: 47–66.
Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z., Peng, X., Li, Z., Qin, S., & Xing, K., (2019). Volatile Organic Compounds Produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as Biological Fumigants to Control Ceratocystis fimbriata in Postharvest Sweet Potatoes. J. Agric. Food Chem., 67, 3702-3710, https://doi.org/10.1021/acs.jafc.9b00289.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.