Remediation of Heat Stress in Tomato (Lycopersicon Esculentum L.) by Foliar Application of Proline
DOI:
https://doi.org/10.24925/turjaf.v13i3.648-655.7258Keywords:
Tomato, High temperature, Damage, Growth, Physiological Changes, ProlineAbstract
The tomato is a significant vegetable in the world on the basis of consumption, nutrition, and extensive use in processed foods. During plant growth and development, amino acids especially exogenous application of proline (Pro), plays a crucial role to increase stress tolerance under various abiotic stresses. Among abiotic stressors, temperature is considered as an important and alarming stressor for plant development and growth. Sometime a significant drop in crop productivity is the outcome of harsh temperature increment. An investigation was carried out at the Horticulture Lab, College of Agriculture, University of Sargodha, during 2021-22 to inspect the role of foliar application of proline under heat stress in tomato plants. Tomato seedlings with true leaves were exposed to high temperatures (25°C [control], 40°C, and 45°C) with exogenous proline sprays of (0, 0.5, 1 and 1.5 mili-molars). Various growth attributes like morphological i-e number of leaves, leaf area cm2, shoot fresh weight (mg), shoot dry weight (mg), root fresh weight (mg), root dry weight (mg), and physiological [photosynthetic rate (µ mol/m-2s-1)], chlorophyll contents (spad), stomatal conductance (µ mols m-2 s-1 transpiration rate (µ mol/m-2 s-1),)] were studied. The findings indicated that foliar application of proline at 1.5 mM under heat stress on 40oC and 45oC was found to be more advantageous to improve growth attributes like number of leaves (12.2), leaf area (8.3 cm2), shoot length (10.39 cm), shoot fresh weight (1.88 mg), shoot dry weight (0.28 mg), root dry weight (0.20 mg), and remediated the detrimental effect of heat stress in tomato plants. The variation between control and proline treated heat-stressed plants supported that proline may have a function in alleviating heat stress.
References
Abraham, E., Hourton, C., Erdei, C., Szabados, L. (2010). Methods for determination of proline in plant stress tolerance methods and protocols. Methods in Molecular Biology. 639, 318 -331.
Ahmad, J., Balal, R. M., Shahid, M. A., Akhtar, G., Akram, A., Khan, M. W., & Zubair, M. (2016). Characterization of okra genotypes at reproductive stage under high temperature stress. International Journal of Chemical and Biochemical Sciences, 9, 44-48.
Akram, S., Ayyub C. M., Shahzad, M., Shahzad, A. (2021). Role of proline in mitigating the deleterious effects of heat stress in chillies. Serbian J. Agricult. Sci. 70 28–35. 10.2478/contagri-2021-0006.
Ali M, Muhammad I, ul Haq S, Alam M, Khattak AM, Akhtar K, Ullah H, Khan A, Lu G, Gong ZH.(2020). The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsici. Frontiers in Plant Science. 26;11:219. https://doi.org/10.3389/fpls.2020.00219.
Ali, M. M., (2017). Alleviation of heat stress in tomato by exogenous application of sulfur. Horticulturae 7, 21.
Ali, M., Muhammad, I., ul Haq, S., Alam, M., Khattak, A.M., Akhtar, K., Ullah, H., Khan, A., Lu, G., Gong, Z.H. (2020). The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsici. Frontiers in Plant Science. 26;11:219. https://doi.org/10.3389/fpls.2020.00219.
Alsamir, M., Ahmad, N. M., Mahmood, T. and Trethowan, R. (2017). Morpho-Physiological Traits Linked to High Temperature Stress Tolerance in Tomato (S. lycopersicum L.). American Journal of Plant Sciences, 8, 2681-2694. https://doi.org/10.4236/ajps.2017.811180
Alsamir, M., Mahmood, T., Trethowan, R., Ahmad, N., (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi J Biol Sci. 28(3):1654-1663. doi: 10.1016/j.sjbs.2020.11.088. Epub 2020 Dec 8. PMID: 33732051; PMCID: PMC7938145.
Anjum, N. A., Sofo, A., Choudhury, R., Gill, A., & Iqbal, S. (2014). Lipids and proteins major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22, 4099-4121.
Ashraf, M., Wahid, A., S, Gelani., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental Botany, 61, 199-223.
Clay, N., B. King, (2019) Smallholders’ uneven capacities to adapt to climate change amid Africa’s ‘green revolution’: Case study of Rwanda’s crop intensification program World Dev, 116 pp. 1-14
Dos Santos, T.B., Ribas, A.F., de Souza, S.G.H., Budzinski, I.G.F., Domingues, D.S. (2022). Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses, 2:113-135. https://doi.org/10.3390/stresses2010009
Fahad S, Noor M, Adnan M, Khan MA, Rahman IU, Alam M, Khan IA, Ullah H, Mian IA, Hassan S, Saud S. (2019). Abiotic stress and rice grain quality in Advances in Rice Research for Abiotic Stress Tolerance.(pp. 571-583). Wood head Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00028-9
Fedina, L.S., Tsonev, T., Guleva, E.I. (1993). The effect of pre-treatment with proline on the response of Pisum sativum to salt stress. Photoynthetica. 29:521–7.
Food and Agriculture Organization of the United Nations. Crops and Livestock Products. (2022). Available online: https://www.fao.org/faostat/en/#data/QCL
Gadallah, M.A.A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant, 42:249–57. doi: 10.1023/A:1002164719609. .
Giri, A., Heckathorn, S., Mishra, S., & Krause, C. (2017). Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants, 6(1): 6. https://doi.org/10.3390/plants6010006.
Guilioni, L., Wery J., & Tardieu, F. (1997). Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs. Journal of international Annual Botany, 80, 159-168.
Guo, T., Gull, S., Ali, M.M. (2022). Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Sci Rep 12, 11324. https://doi.org/10.1038/s41598-022-15590-z
Gupta, A., Yadav, D.S., Agrawal, S.B. (2023). Individual Effects of High Temperature and Tropospheric Ozone on Tomato: A Review. J. Plant Growth Regul. 42, 1421–1443 https://doi.org/10.1007/s00344-022-10678-2.
Hall, A.E., (2001). Crop Responses to the Environment. CRC Press LLC, Boca Raton, Florida.
Haque, M.S., Husna, M.T., Uddin, M.N., Hossain, M.A., Sarwar, A.K.M.G., Ali, O.M., Abdel Latef, A.A.H., Hossain, A. (2021). Heat Stress at Early Reproductive Stage Differentially Alters Several Physiological and Biochemical Traits of Three Tomato Cultivars. Horticulturae, 7, 330. https://doi.org/10.3390/horticulturae7100330.
Hare, P.D., Cress, W.A., Staden., J. A. (2003). Regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regul.;39:41–50. doi: 10.1023/A:1021835902351.
Hassan, M. U., Chattha., M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., Ali, A. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—A review. Plant Biosyst. Int. J.Deal. All Asp. Plant Biol, 155, 211–234.
Hassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B., Barbanti, L., Aamer, M. & Aslam, T. (2020). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies - A review. Plant Biosystems 155(2): 211-234.
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing cells under saline conditions. Journal of Soil Science & Plant Nutrition 50, 1301-1305.
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., Garnczarska, M. (2022). Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. Int. J. Mol. Sci.23, 5186. https://doi.org/10.3390 /ijms23095186.
Hussain, R. Ayyub., C.M. Shaheen., M.R., Rashid, S. Nafees., M. Ali., S. Butt., M., Ali., M. Maqsood, A., Fiaz, S. (2021). Regulation of Osmotic Balance and Increased Antioxidant Activities under Heat Stress in Abelmoschus esculentus L. Triggered by Exogenous Proline Applications. Agronomy, 11, 685.
Osei-Bonsu., M. K. Osei., R. Y. Agyare., J. Adjebeng-Danquah., K. (2022). Assessing the heat stress tolerance potential of tomato lines under poly-house and open field conditions, Cogent Food & Agriculture, 8:1, DOI: 10.1080/23311932.2022.2115665.
Inayat, H., Mehmood, H., Danish, S. (2024). Impact of cobalt and proline foliar application for alleviation of salinity stress in radish. BMC Plant Biol 24, 287 (2024). https://doi.org/10.1186/s12870-024-04998-6.
Jahan, M.S., Shu, S., Zhong, M., Chen, Z., Wu, J., Sun, J., Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in tomato (Solanum Lycopersicum L.) by enhancing photosynthetic efficiency and improving antioxidant defense through scavenging of reactive oxygen species. Sci. Hortic, 247, 421–429.
Jain, R., Solomon., Shrivastava, S., & Lal, A. K. (2009). Nutrient application improves stubble bud sprouting under low temperature conditions in sugarcane. Premium Sugar Technology 11 (1), 83-85.
Kahlaoui, B., Hachicha, M., Misle, E., Fidalgo, F., Teixeira, J.(2018). Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water, Journal of the Saudi Society of Agricultural Sciences, 17(1):17-23. ISSN 1658-077X, https://doi.org/10.1016/j.jssas.2015.12.002
Kahlaoui, B., Hachicha, M., Misle, E. Hanchi, B., Teixeira, J. (2014). Improvement of crops production under saline stress by bio-hydraulic approach, Improvement of crops in the Era of Climatic Changes, vol. 1, Springer, New York, 231-245.
Kahloui, B., Hachicha, M., Teixeira, J., Misle, J., Fidalgo, F., & Hanchi, B. (2013). Response of two tomato cultivars to field-applied proline and salt stress. Journal of stress Physiology & Biochemistry, 357-365.
Khan, A., Farzana, S., Ahmad, K., Khan, Z. I., Shah, A., & Nawaz, H. (2015). Amelioration of adverse effects of salt stress in okra (Hibiscus esculentus L.) by foliar application of proline. American-Eurasian Journal of Agriculture & Environmental Science, 15 (11): 2170-2179..
Kumar, S., Sirhindi, G., Bhardwaj, R., & Arora, P. (2012). Role of 24-Epibrassinolide in Amelioration of High Temperature Stress through Antioxidant Defence System in (Brassica juncea L.). Plant Stress, 6, 55-58.
M, Ashraf, Wahid, A., S, Gelani., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental Botany, 61, 199-223.
Meena, Y., D. Khurana, N. Kaur, K. Singh. (2018). Towards enhanced low temperature stress tolerance in tomato: an approach J. Environ. Biol, 268 (39):529-535.
N. Clay, B. King, (2019) Smallholders’ uneven capacities to adapt to climate change amid Africa’s ‘green revolution’: Case study of Rwanda’s crop intensification program World Dev, 116 (2019), pp. 1-14
Nover, L. (ed.) (1991). Heat shock response. Boca Raton: CRC Press.
Nover, L., & Scharf, K. D. (1997). Heat stress proteins and transcription factors. Journal of Cell. Biology & Life Sciences 53, 80-103.
Orsini, F., Pennisi, G., Mancarella, S., Al Nayef, M., Sanoubar, R., Nicola, S., Gianquinto, G. (2018). Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline. Sci. Hortic., 233, 283–293.
Osei-Bonsu. I., M. K. Osei., R. Y. Agyare., J. Adjebeng-Danquah., K. (2022). Assessing the heat stress tolerance potential of tomato lines under poly-house and open field conditions, Cogent Food & Agriculture, 8:1, DOI: 10.1080/23311932.2022.2115665
Oyebamiji, Y. O., Abd Aziz Shamsudin, N., Asmuni, M. I., & Yusop, M. R. (2023, July 31). Heat Stress in Vegetables: Impacts and Management Strategies – A Review. Sains Malaysiana, 52(7), 1925–1938. https://doi.org/10.17576/jsm-2023-5207-03
Pareeda, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants. A review. Ecotoxicology and Environmental Safety 60, 324-49.
Posmyk, M.M., Janas, K.M. (2007). Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol Plant.29:509–17. doi: 10.1007/s11738-007-0061-2.
Priya, M., Sharma, L., Singh, I., Bains, T., Siddique, K.H., Bindumadhava, H., Nair, R.M., Nayyar, H. (2019).Securing reproductive function in mungbean grown under high temperature environment with exogenous application of proline. Plant Physiol. Biochem, 140, 136–150.
Rajametov, S.N., Yang, E.Y., Cho, M.C. (2021). Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress conditions. Sci Rep 11, 14328.https://doi.org/10.1038/s41598-021-93697-5.
Rampino, P., Mita, G., Pataleo, S., Pascali, M., D. Fonzo., & Perrotta, C. (2009). Acquisition of thermo tolerance and HSP gene expression in durum wheat (Triticum durum Desf.) Cultivars. Journal of Environment Experiment and Botany, 66: 257-264.
Sadeghipour, O. (2020). Cadmium toxicity alleviates by seed priming with proline or glycine betaine in cowpea (Vigna Unguiculata (L.) Walp.). Egypt. J. Agron., 42, 163–170.
Samuel, D., Kumar, T. K., Ganesh, G., Jayaraman, G., Yang., Chang, P. W., & Yu, C. (2000). Proline inhibits aggregation during protein refolding. Protein Science, 9 (2), 344 -352..
Santos, T. B. D., Ribas, A. F., De Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses, 2(1), 113–135. https://doi.org/10.3390/stresses2010009.
Shashikanth, N., Basavaraj, R. M., & Hosamani, Patil. (2010). Genetic variability in tomato (Solanum Lycopersicon [Mill].). Karnataka Journal of Agriculture Science.23 (3):536-53.
Sher, A., Asghar, Y., Qayum, A., Shabaz, M., Kiran, F., Arshad, L., Mehdi, N., Bibi, U., Iqbal, S., Bibi, Z., Anjum, R., Rasool, H., & Mazher, J. (2022). A Review on Strong Impacts of Thermal Stress on Plants Physiology, Agricultural Yield; and Timely Adaptation in Plants to Heat Stress, Journal of Bioresource Management, 9 (4).
Steel, R.G.D. and Torrie, J.H. (1980) Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York.
Ullah H, Khalil IH, Lightfoot DA. (2012). Selecting mungbean genotypes for fodder production on the basis of degree of indeterminacy and biomass. Pak. J. Bot. 1; 44(2): 697-703. http://www.pakbs.org/pjbot/PDFs/44(2)/35.pdf
Ullah H, Subthain H, Khalil IH, Khan WU, Jamal Y, Alam M. (2014). Stress selection indices an acceptable tool to screen superior wheat genotypes under irrigated and rain-fed conditions. Pak. J. Bot. 15; 46(2): 627-38. http://www.pakbs.org/pjbot/PDFs/46(2)/33.pdf
Urban, J., Ingwers M., McGuire M.A., Teskey R.O. (2017): Stomatal conductance increases with rising temperature. Plant Signaling and Behavior, 12(8), e1356534. DOI: 10.1080/15592324.2017.1356534.
Vollenweider, P., & Goerge, M. S. (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Journal of Environmental Pollution, 137, 455-465.
Wahid, A., S, Gelani., M, Ashraf., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental Botany. 61, 199-223.
Wang, J., Chen, Y., Tett, S., Yan, Z. W., Zhai, P. M., Feng, J. M., et al. (2020). Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11:528. doi: 10.1038/s41467-019-14233-8.
Wang, J., Chen, Y., Tett, S., Yan, Z. W., Zhai, P. M., Feng, J. M., et al. (2020). Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11:528. doi: 10.1038/s41467-019-14233-8.
Zhou, R.; Yu, X.; Xu, L.P.; Wang, Y.L.; Zhao, L.P.; Zhao, T.M.; Yu, W.G. (2019). Genome-wide identification of circular RNAs in tomato seeds in response to high temperature. Biol. Plant., 63, 97–103.
Zulfiqar, F., Ashraf, M. (2023). Proline Alleviates Abiotic Stress Induced Oxidative Stress in Plants. J Plant Growth Regul 42, 4629–4651 https://doi.org/10.1007/s00344-022-10839-3.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.