The Impact of PEG-induced Drought Stress on Seed Germination and Initial Seedling Growth of Lupinus albus L.
DOI:
https://doi.org/10.24925/turjaf.v13i3.635-641.7360Keywords:
Lupinus albus L., Drought (PEG6000) stress, Germination, Initial seedling growthAbstract
Drought is regarded as one of the most significant abiotic constraints to agricultural crop output worldwide. Drought in the spring and early summer, which coincides with important reproductive stages, severely limits lupin yield in Mediterranean climate zones. The purpose of this study was to determine how different drought treatments affected seed germination and initial seedling growth in Lupinus albus L. (white or field lupin). Seed germination parameters and initial seedling growth traits were tested against five levels of drought stress induced with Polyethylene glycol-6000 (PEG6000) at concentrations of 0, 4, 8, 12, and 16%. An experiment with four replications was conducted using a completely randomized design. The results revealed that the negative effect of drought stress started at 4% (-0.03 MPa or -0.3 bar) treatment for the initial seedling growth stage; whereas, it started at 12% (-0.2 MPa or -2 bar) treatment for the germination stage. Therefore, it was determined that L. albus was more sensitive to drought stress at the initial seedling growth stage than at the germination stage. However, it was observed that the growth parameters were more sensitive in shoot growth than in root growth to drought stress. There will be a sharp loss of yield in soils with levels of drought stress imposed by 12% PEG6000 (-0.2 MPa-moderate drought-) and beyond. Therefore, it is likely that L. albus has low drought tolerance.
References
Abdul-Baki, A.A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13, 630-633.
Ahmed, M., Kheir, A.M.S., Mehmood, M.Z., Ahmad, S., & Hasanuzzaman, M. (2022). Changes in germination and seedling traits of sesame under simulated drought. Phyton-International Journal of Experimental Botany, 91(4), 714-726. https://doi.org/10.32604/phyton.2022.018552
Al-Enezi, N.A., Al-Bahrany, A.M., & Al-Khayri, J.M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5): 415-424.
Ali, M. A., Abbas, A., Awan, S.I., Jabran, K., & Gardezi, S.D.A. (2011a). Correlated response of various morpho-physiological characters with grain yield in sorghum landraces at different growth phases. The Journal of Animal and Plant Sciences, 21(4), 671-679.
Ali, Q., Ahsan, M., Hussain, B., Elahi, M., Khan, N.H., Ali, F., Elahi, F., Shahbaz, M., Ejaz, M., & Naees, M. (2011b). Genetic evaluation of maize (Zea mays L.) accessions under drought stress. International Research Journal of Microbiology, 2(11), 437-441.
Annicchiarico, P., Romani, M., & Pecetti, L. (2018). White lupin (Lupinus albus) variation for adaptation to severe drought stress. Plant Breeding,137,782-789. https://doi.org/10.1111/pbr.12642
Ashraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Atak, M., Kaya, M.D., Kaya, G., Cıkılı, Y., & Ciftçi, C.Y. (2006). Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turkish Journal of Agriculture and Forestry, 30, 39-47.
Bagheri, M., & Yeganeh, H. (2011). Effect of water stress on seed germination of Thymus koteschanus and Hohen and Thymus daenensls Celak. Middle-East Journal of Scientific Research, 8(4), 726-731.
Baghizadeh, A., & Hajmohammadrezaei, M. (2011). Effect of drought stress and its interaction with ascorbate and salicylic acid on okra [Hibiscus esculents.) germination and seedling growth. Journal of Stress Physiology & Biochemistry, 7, 55-65.
Bajji, M., Lutts, S., Kinet, J.M. (2000). Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in roots and leaves of durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. Journal of Plant Physiology, 157, 100-108. DOI: 10.1016/S0176-1617(00)80142-X
Bertsouklis, K., Vlachou, G., Trigka, M., & Papafotiou, M. (2022). In Vitro Studies on Seed Germination of the Mediterranean Species Anthyllis barba-jovis to Facilitate Its Introduction into the Floriculture Industry. Horticulturae, 8 (889), 1-12. https://doi.org/10.3390/horticulturae8100889
Beyaz, B., Kaya, G., Cocu, S., & Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4),477-481. https://doi.org/10.1590/S0103-90162011000400013
Bibi A, H.A. Sadaqat, Akram, H. M., & and Mohammed M.I. (2010). Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition. International Journal of Agriculture and Biology, 12, 451–455.
Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E., & Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, (12)244, 1-14. https://doi.org/10.3390/agronomy12020244
Dietz, K.J., Zörb, C., & Geilfus, C.M. (2021). Drought and crop yield. Plant Biology, 23, 881-893.
Ellis, R.H., & Roberts, E.H. (1980). Towards a rational basis for testing seed quality. In P.D. Hebblethwaite (ed.), Seed Production (pp 605-645).
Hessini, K., Martínez, J.P., Gandour, M., Albouchi, A., Soltani, A., & Abdelly, C. (2009). Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water‐use efficiency in Spartina alterniflora. Environmental and Experimental Botany, 67(2), 312–319. doi: https://doi.org/10.1016/j.envexpbot.2009.06.010.
Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Shraf, U., Parveen, A., Saqib, M., & Rafiq, M. (2019). Drought stress in plants: an overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6, 389-402. DOI: 10.14719/pst.2019.6.4.578
Jamil, H., Khan, F.A., Tahir, M.H.N., & Sadia, B. (2019). Screening for water deficit stress tolerance in Brassica napus L. using PEG-6000. Pakistan Journal of Agricultural Sciences, 56(3), 653-660. DOI: 10.21162/PAKJAS/19.7563
Kaya, M.D., Okçu, G., Atak, M., Çıkılı, Y., & Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. https://doi.org/10.1016/j.eja.2005.08.001
Kayaçetin, F. (2022a). Assessment of safflower genotypes for individual and combined effects of drought and salinity stress at early seedling growth stages. Turkish Journal of Agriculture and Forestry, 46(5), 601-612. https://doi:10.55730/1300-011X.3029
Kayacetin, F. (2022b). Response to Direct Selection against Drought Stress in Black Cumin (Nigella sativa L.). Evidence-Based Complementary and Alternative Medicine, 2022, 1-10. https://doi.org/10.1155/2022/6888187
Kaydan, D., & and Yagmur, M. (2008). Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. African Journal of Biotechnology, 7(16), 2862-2868. DOI: 10.5897/AJB08.512
Keresa, S., Baric, M., Sarcevic, H., Jercic, I.H., & Vujic, V. (2008). Tolerance to drought stress of Croatian winter wheat genotypes at seedling stage. Cereal Research Communications, (36), 1039-1042.
Koskosidis, A., Khah, E., Mavromatis, A., Pavli, O., & Vlachostergios, D.N. (2020). Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) Genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 294-304. DOI: https://doi.org/10.15835/nbha48111799
Kouighat, M., Hanine, H., El Fechtali, M., & Nabloussi, A. (2021). First report of sesame mutants tolerant to severe drought stress during germination and early seedling growth stages. Plants, 10, 1-15. DOI: 10.3390/plants10061166
Li, J., Yin, L.Y., Jongsma, M.A., & Wang, C.Y. (2011). Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Industrial Crops and Products, 34, 1543-1549. https://doi.org/10.1016/j.indcrop.2011.05.012
Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2, 176-177. http://dx.doi.org/10.2135/cropsci1962.0011183X0 00200020033x
Michel, B.E., & Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51, 914–916.
Okçu, G., Kaya, M.D., & Atak, M. (2005). Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry, 29, 237-242.
Pecetti, L., Annicchiarico, P., Crosta, M., Notario, T., Ferrari, B., & Nazzicari, N. (2023). White lupin drought tolerance: genetic variation, trait genetic architecture, and genome-enabled prediction. International Journal of Molecular Sciences, 24(3), 1-20. https://doi.org/10.3390/ijms24032351
Perisse, P., Aiazzi, M.T., & Planchuelo, A.M. (2002). Water uptake and germination of Lupinus albus and Lupinus angustifolius under water stress. Seed Science and Technology, 30, 289–298.
Pinheriro, C., Passarinho, J.A., & Ricardo, C.P., (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology,161, 1203-1210. https://doi.org/10.1016/j.jplph.2004.01.016
Pratap, V., & Sharma Y.K. (2010). Impact of osmotic stress on seed germination and seedling growth in black gram (Phaseolus mungo). Journal of Environmental Biology, 31,721-726.
Rajendran, R.A., Muthiah, A.R., Manickam, A., Shanmugasundaram, P., & John Joel, A. (2011). Indices of drought tolerance in sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Research Journal of Agriculture and Biological Science, 7, 42-46. https://doi.org/10.1016/j.repbre.2023.10.005
Rehman, S., Harris, P.J.C., Bourne, W.F., & Wilkin, J. (1996). The effect of sodium chloride on germination and the potassium and calcium content of Acacia seeds. Seed Science and Technology, 25, 45-57.
Robin, A.H.K., Ghosh, S., & Shahed, M.A. (2021). PEG-Induced Osmotic Stress Alters Root Morphology and Root Hair Traits in Wheat Genotypes. Plants, 10,1042), 1-20. https://doi.org/10.3390/plants10061042
Robin, A.H.K., Uddin, M.J., & Bayazid, K.N. (2015). Polyethylene Glycol (PEG)-treated hydroponic culture reduces length and diameter of root hairs of wheat varieties. Agronomy, (5), 506-518. DOI: 10.3390/agronomy5040506
Rogan, P.G., & Simon, E.W. (1975). Root growth and onset of mitosis in germination Vicia faba. New Phytologist, 74, 263-265.
Rohamare, Y., Dhumal, K.N., & Nikam, T.D. (2014). Response of Ajowan to water stress induced by polyethylene glycol (PEG) 6000 during seed germination and seedling growth. Journal of Environmental Biology, (35),789-793.
Salih, A.A., Ali, I.A., Lux, A., Luxova, M., Cohen, Y., Sugimoto, Y., & Inanaga, S. (1999). Rooting, water uptake, and xylem structure adaptation to drought of two sorghum cultivars. Crop Science, 39, 168-173.
Şehirali, S., & Yorgancılar, Ö. (2011). Tohumluk ve Teknolojisi. Düzeltilmiş Dördüncü Baskı. İzmir. 528 s.
Slabu, C., Simioniuc, D.P., Lipşa, F.D., & Simioniuc, V. (2010). Physiological response to water and salt stress of some white lupine cultivars (Lupinus albus). Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaş seria Agronomiei, 53(1), 64-68.
Snedecor, G.W., & Cochran W.G. (1967). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press. p 693.
Spielmeyer, W., Hyles, J., Joaquim, P., Azanza, F., Bonnett, D., Ellis, M.E., Moore, C., & Richards, R.A. (2007). A QTL on chromosome 6a in bread Wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theoretical and Applied Genetics, 115, 59-66. DOI: 10.1007/s00122-007-0540-2
Tavares, D.S., Fernandes, T.E.K., Rita, Y.L., Rocha, D.C., Sant’Anna-Santos, B.F., & Gomes, M.D. (2021). Germinative metabolism and seedling growth of cowpea (Vigna unguiculata) under salt and osmotic stress. South African Journal of Botany, 139 (2021), 399-408. https://doi.org/10.1016/j.sajb.2021.03.019
Toscano, S., Romano, D., Tribulato, A., & Patane, C. (2017). Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiologiae Plantarum, 39. DOI 10.1007/s11738-017-2484-8
Younis, M.E., El-Shahaby, O.A., Abo-Hamed, S.A., & Ibrahim, A.H. (2000). Effects of water stress on growth, pigments and assimilation in three sorghum cultivars. Journal of Agronomy and Crop Science, 185, 73-82. https://doi.org/10.1046/j.1439-037x.2000.00400.x
Yu, Q., & Rengel, Z. (1999). Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Science, 142, 1–11. DOI: 10.1111/plb.13304
Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., & Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165, 1455-1465. DOI: 10.1016/j.jplph.2008.01.001
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.