Cross-Correlation of Soil Moisture and Stone Content and Their Spatial Pattern Across the Different Slope Aspects and Soil Depth
DOI:
https://doi.org/10.24925/turjaf.v11i4.625-633.5279Anahtar Kelimeler:
Ethiopian Highlands- North facing slope- stone content- topsoil moisture- watershedÖzet
The analysis of the spatial interrelationship between soil properties and slope aspect is vital for understanding the range of influence on soil depth, moisture, and stone content distribution. This study aimed to investigate the spatial interrelationship of topsoil moisture and stone content in different slope aspects and soil depth. The 53.7 km2 watershed was divided into a 500m by 500m grid using ArcGIS and 230 soil samples were collected. In each sampling point, the soil was taken at three soil depth classes (0–25cm, 25–60cm, and 60–100cm) using a cylindrical auger, then soil samples were tested to determine the percentage of topsoil moisture, and stone content. The spatial interrelationship between aspect, soil depth, topsoil moisture, and stone content was analyzed using the R and GS+ software. The study had shown non-significant effects of aspect on topsoil moisture, stone content, and soil depth. However, topsoil moisture tends to be higher on the north-facing slope, while stone content tends to be higher on the southeast-facing slope. The analysis of Local Moran’s I revealed that topsoil moisture, stone content, and soil depth were significantly autocorrelated. The cross-semivariogram analysis of soil depth with topsoil stone content depicted a negative spatial correlation. The experimental cross-semivariogram of soil depth versus topsoil moisture was positively fitted to the exponential function, whereas soil depth with topsoil stone content was best fitted to the Gaussian model. Overall, soil depth is the more influential factor than the slope aspect regarding topsoil moisture depletion and stone content distribution in the study watershed.
Referanslar
Addis HK, Andreas K. 2015. Predicting the spatial distribution of soil erodibility factor using USLE nomograph in an agricultural watershed, Ethiopia. Int. Soil Water Conserv Res 3(4): 282–290. Doi: https://doi.org/10.1016/ j.iswcr.2015.11.002
Addis HK, Klik A, Strohmeier S. 2015. Spatial variability of selected soil attributes under agricultural land use system in a mountainous watershed, Ethiopia. Int J Geosci l(6): 605–613. Doi: http://dx.doi.org/10.4236/ijg.2015.66047
Addis HK, Strohmeier S, Ziadat F, Melaku ND, Klik A. 2016. Modeling streamflow and sediment using SWAT in Ethiopian Highlands. 9, 51-66. Int J Agri. Biol Eng 9(5): 51–66. Doi: http://dx.doi.org/10.3965/j.ijabe.20160905.2483
Alexandridis TK, Cherif I, Bilas G, Almeida WG, Hartanto IM, Van Andel SJ, Araujo A. 2016. Spatial and temporal distribution of soil moisture at the catchment scale using remotely-sensed energy fluxes. Water 8(32): 1–16. Doi: https://doi.org/10.3390/w8010032
Anselin L. 2002. Exploring spatial data with DynESDA2 CSISS and spatial analysis laboratory University of Illinois, Urbana-Champaign 12
Anselin L, Syabri I, Kho Y. 2010. GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1): 5–22. Doi: https://doi.org/10.1111/j.0016-7363.2005.00671.x
Anselin LJT, Francis L. 1996. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. Spatial analytical perspectives on GIS.
Baroni G, Ortuani B, Facchi A, Gandolfi C. 2013. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. J Hydrol 489: 148–159. Doi: https://doi.org/ 10.1016/j.jhydrol.2013.03.007
Baskan O, Kosker Y, Erpul G. 2013. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region. Environ Monit Assess 185(12): 10441–10458. Doi: https://doi.org/10.1007/s10661-013- 3343-8
Brandt MJ, Johnson KM, Elphinston AJ, Ratnayaka DD. 2017. Chapter 3 - Hydrology and Surface Supplies. In: Brandt MJ, Johnson KM, Elphinston AJ, Ratnayaka DD (eds) Twort's Water Supply (Seventh Edition). Butterworth-Heinemann, Boston, pp 65-116. Doi: https://doi.org/10.1016/B978-0-08-100025-0.00003-X
Bretherton M, Scotter D, Horne D, Hedley M. 2010. Towards an improved understanding of the soil water balance of sloping land under pasture. N Z J Agric Res 53(2): 175–185. Doi: https://doi.org/10.1080/00288233.2010.482957
Brocca L, Melone F, Moramarco T, Morbidelli R. 2010. Spatial‐temporal variability of soil moisture and its estimation across scales. Water Resour Res 46: 1–14. Doi: https://doi.org/10.1029/2009WR008016
Brocca L, Tullo T, Melone F, Moramarco T, Morbidelli R. 2012. Catchment scale soil moisture spatial–temporal variability. J Hydrol 422–423: 63–75. Doi: https://doi.org/10.1016 /j.jhydrol.2011.12.039
Ceddia MB, Vieira SR, Villela ALO, Mota LdS, Anjos LHCd, Carvalho DFd. 2009. Topography and spatial variability of soil physical properties. Sci Agric 66(3): 338–352. Doi: http://dx.doi.org/10.1590/S0103-90162009000300009
Cerdà AJJH. 1997. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. J Hydrol 198(1–4): 209–225. Doi: https://doi.org/10.1016/S0022-1694(96)032 95-7
Christopher J, Manschadi A, Hammer G, Borrell A. 2008. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust J Agric Res 59(4): 354–364. Doi: https://doi.org/10.1071/AR07193
Dobriyal P, Qureshi A, Badola R, Hussain SA. 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. J Hydrol 458–459: 110–117. Doi: https://doi.org/10.1016/j.jhydrol. 2012.06.021
Famiglietti JS, Ryu D, Berg AA, Rodell M, Jackson TJ. 2008. Field observations of soil moisture variability across scales. Water Resour Res 44(1): 1–16. Doi: https://doi.org/10.1029/2006WR005804
Feng Q, Zhao W, Qiu Y, Zhao M, Zhong L. 2013. Spatial heterogeneity of soil moisture and the scale variability of its influencing factors: A case study in the loess plateau of China. Water 5(3): 1226–1242. Doi: https://doi.org/10.3390 /w5031226
Gallardo-Cruz JA, Pérez-García EA, Meave JA. 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landsc Ecol 24(4): 473–482. Doi: https://doi.org/1 0.1007/s10980-009-9332-1
Gates DM (2012) Biophysical ecology. Courier Corporation.
Geroy I, Gribb M, Marshall HP, Chandler D, Benner SG, McNamara JP. 2011. Aspect influences on soil water retention and storage. Hydrol Process 25(25): 3836–3842. Doi: https://doi.org/10.1002/hyp.8281
Gong X, Brueck H, Giese K, Zhang L, Sattelmacher B, Lin S. 2008. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 72(4): 483–493. Doi: https://doi.org/10.1016/j.jaridenv.2007.07.001
Goovaerts P. 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89(1–2) 1–45. Doi: https://doi.org/10.1016/S0016-7061(98)00078-0
Guo D, Mou P, Jones RH, Mitchell RJ. 2002. Temporal changes in spatial patterns of soil moisture followingafter disturbance: an experimental approach. J Ecol 90(2): 338–347. Doi: https://doi.org/10.1046/j.1365-2745.2001.00667.x
Hanna A, Harlan P, Lewis DJAJ. 1982. Soil available water as influenced by landscape position and aspect 1. Agron J 74(6): 999–1004. Doi: https://doi.org/10.2134/agronj1982.0002196 2007400060016x
Hauser M, Orth R, Seneviratne SIJGMD. 2017. Investigating soil moisture–climate interactions with prescribed soil moisture experiments: an assessment with the Community Earth System Model (version 1.2). Geosci Model Dev 10(4): 1665–1677. Doi: https://doi.org/10.5194/gmd-10-1665-2017
Kassaye G, Addis HK, Teklay A. 2018. Assessment of Spatial Soil Erosion Susceptibility Based on the CORINE Model in the Gumara-Maksegnit Watershed, Ethiopia. J Nat Resour Dev 8: 38–45. Doi: https://doi.org/10.5027/jnrd.v8i0.05
Kim S. 2012. Characterization of annual soil moisture response pattern on a hillslope in Bongsunsa Watershed, South Korea. J Hydrol 448: 100–111. Doi: https://doi.org/10. 1016/j.jhydrol.2012.04.030
Kirkham MB. 2005. Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range, in principles of soil and plant water relations, 2nd ed. California, Elsevier Academic Press, Chap. 8, sec. 598, pp. 101–110.
Kutiel P, Lavee H, Ackermann O. 1998. Spatial distribution of soil surface coverage on north and south facing hillslopes along a Mediterranean to extreme arid climatic gradient. Geomorphology 23(2–4): 245–256. Doi: https://doi.org/10. 1016/S0169-555X(98)00007-5
Latron J, Soler M, Llorens P, Gallart FJHPAIJ. 2008. Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrol Process 22(6): 775–787. Doi: https://doi.org/10.1002/hyp.6648
Legates DR, Mahmood R, Levia DF, DeLiberty TL, Quiring SM, Houser C, Nelson FE. 2011. Soil moisture: A central and unifying theme in physical geography. Prog Phys Geogr 35(1): 65–86. Doi: https://doi.org/10.1177/ 03091333 10386514
Lu N, Chen S, Wilske B, Sun G, Chen JJJPE. 2011. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. J Plant Ecol 4(1–2): 49–60. Doi: https://doi.org/10.1093/jpe/rtq035
McMillan H, Srinivasan M. 2015. Characteristics and controls of variability in soil moisture and groundwater in a headwater catchment. Hydrol Earth Syst Sci 19(4): 1767–1786. Doi: https://doi.org/10.5194/hess-19-1767-2015
Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Ejrnæs R, Odgaard MV, Svenning JC. 2013. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers Conserv 22(10): 2151–2166. Doi: https://doi.org/10.1007/s10531-013-0442-3
Qiu Y, Fu B, Wang J, Chen LJJAE. 2001. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. J Arid Environ 49(4): 723–750. Doi: https://doi.org/10.1006/ jare.2001.0828
Ries F, Lange J, Schmidt S, Puhlmann H, Sauter MJH. 2015. Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol Earth Syst Sci 19(3): 1439–1456. Doi: https://doi.org/10.5194/hess-19-1439-2015
Robertson G. 2000. GS+: Geostatistics for the environmental sciences. Gamma Design Software Plainwell
Rodriguez‐Iturbe I. 2000. Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamies. Water Resour Res 36(1): 3–9. Doi: https://doi.org/10.1029/ 1999WR900210
Rosenbaum U, Bogena HR, Herbst M, Huisman J, Peterson T, Weuthen A, Western A, Vereecken H. 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour Res 48(10): 1–22. Doi: https://doi.org/10.1029/2011WR011518
Team RC. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Tromp-van Meerveld H, McDonnell J. 2006. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Adv Water Resour 29(2): 293–310. Doi: https://doi.org/10.1016/ j.advwatres.2005.02.016
Venkatesh B, Lakshman N, Purandara B, Reddy V. 2011. Analysis of observed soil moisture patterns under different land covers in Western Ghats, India. J Hydrol 397(3-4): 281-294. Doi: https://doi.org/10.1016/j.jhydrol.2010.12.006
Wang S, Fu B, Gao G, Yao X, Zhou J. 2012. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. . Hydrol Earth Syst Sci 16(8): 2883–2892. Doi: https://doi.org/10.5194/hess-16-2883-2012
Wernerehl RW, Givnish TJ. 2015. Relative roles of soil moisture, nutrient supply, depth, and mechanical impedance in determining composition and structure of Wisconsin prairies. PLoS One 10(9): 1–20. Doi: https://doi.org/10.1371/ journal.pone.0137963
Wilding L. 1985. Spatial variability: its documentation, accomodation and implication to soil surveys. In: Soil spatial variability, Las NV, 30 November-1 December 1984, pp. 166-194.
Yang L, Wei W, Chen L, Chen W, Wang J. 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena 115:123-133. Doi: https://doi.org/10.1016/j.catena.2013.12.005
Yang L, Wei W, Chen L, Jia F, Mo B. 2012. Spatial variation of shallow and deep soil moisture in the semi-arid loess hilly area, China. Hydrol Earth Syst Sci 16(9): 3199–3217. Doi: https://doi.org/10.5194/hess-16-3199-2012
Zhang P, Shao M. 2015. Spatio-temporal variability of surface soil water content and its influencing factors in a desert area, China. Hydrolog Sci J 60(1): 96–110. Doi: https://doi.org/10.1080/02626667.2013.875178
Zhu H, Shi Z, Fang N, Wu G, Guo Z, Zhang Y. 2014. Soil moisture response to environmental factors following precipitation events in a small catchment. Catena 120: 73–80. Doi: https://doi.org/10.1016/j.catena.2014.04.003
Zribi M, Paris AT, Duchemin B, Lili Z, Wagner W, Hasenauer S, Chehbouni A. 2010. Relationship between soil moisture and vegetation in the Kairouan plain region of Tunisia using low spatial resolution satellite data. Water Resour Res 46(6): 1–13. Doi: https://doi.org/10.1029/2009WR008196
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.